{"title":"一类双曲型方程的边界控制问题","authors":"A. Attaev","doi":"10.31489/2022m2/49-58","DOIUrl":null,"url":null,"abstract":"This paper investigates the unique solvability of the boundary control problem for a one-dimensional wave equation loaded along one of its characteristic curves in terms of a regular solution. The solution method is based on an analogue of the d’Alembert formula constructed for this equation. We point out that the domain of definition for the solution of DE, when the initial and final Cauchy data given on intervals of the same length is a square. The side of the squire is equal to the interval length. The boundary controls are established by the components of an analogue of the d’Alembert formula, which, in turn, are uniquely established by the initial and final Cauchy data. It should be noted that the normalized distribution and centering are employed in the final formulas of sought boundary controls, which is not typical for initial and boundary value problems initiated by equations of hyperbolic type.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Boundary control problem for a hyperbolic equation loaded along one of its characteristics\",\"authors\":\"A. Attaev\",\"doi\":\"10.31489/2022m2/49-58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the unique solvability of the boundary control problem for a one-dimensional wave equation loaded along one of its characteristic curves in terms of a regular solution. The solution method is based on an analogue of the d’Alembert formula constructed for this equation. We point out that the domain of definition for the solution of DE, when the initial and final Cauchy data given on intervals of the same length is a square. The side of the squire is equal to the interval length. The boundary controls are established by the components of an analogue of the d’Alembert formula, which, in turn, are uniquely established by the initial and final Cauchy data. It should be noted that the normalized distribution and centering are employed in the final formulas of sought boundary controls, which is not typical for initial and boundary value problems initiated by equations of hyperbolic type.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2022m2/49-58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m2/49-58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Boundary control problem for a hyperbolic equation loaded along one of its characteristics
This paper investigates the unique solvability of the boundary control problem for a one-dimensional wave equation loaded along one of its characteristic curves in terms of a regular solution. The solution method is based on an analogue of the d’Alembert formula constructed for this equation. We point out that the domain of definition for the solution of DE, when the initial and final Cauchy data given on intervals of the same length is a square. The side of the squire is equal to the interval length. The boundary controls are established by the components of an analogue of the d’Alembert formula, which, in turn, are uniquely established by the initial and final Cauchy data. It should be noted that the normalized distribution and centering are employed in the final formulas of sought boundary controls, which is not typical for initial and boundary value problems initiated by equations of hyperbolic type.