一类双曲型方程的边界控制问题

IF 0.7 Q2 MATHEMATICS
A. Attaev
{"title":"一类双曲型方程的边界控制问题","authors":"A. Attaev","doi":"10.31489/2022m2/49-58","DOIUrl":null,"url":null,"abstract":"This paper investigates the unique solvability of the boundary control problem for a one-dimensional wave equation loaded along one of its characteristic curves in terms of a regular solution. The solution method is based on an analogue of the d’Alembert formula constructed for this equation. We point out that the domain of definition for the solution of DE, when the initial and final Cauchy data given on intervals of the same length is a square. The side of the squire is equal to the interval length. The boundary controls are established by the components of an analogue of the d’Alembert formula, which, in turn, are uniquely established by the initial and final Cauchy data. It should be noted that the normalized distribution and centering are employed in the final formulas of sought boundary controls, which is not typical for initial and boundary value problems initiated by equations of hyperbolic type.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Boundary control problem for a hyperbolic equation loaded along one of its characteristics\",\"authors\":\"A. Attaev\",\"doi\":\"10.31489/2022m2/49-58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the unique solvability of the boundary control problem for a one-dimensional wave equation loaded along one of its characteristic curves in terms of a regular solution. The solution method is based on an analogue of the d’Alembert formula constructed for this equation. We point out that the domain of definition for the solution of DE, when the initial and final Cauchy data given on intervals of the same length is a square. The side of the squire is equal to the interval length. The boundary controls are established by the components of an analogue of the d’Alembert formula, which, in turn, are uniquely established by the initial and final Cauchy data. It should be noted that the normalized distribution and centering are employed in the final formulas of sought boundary controls, which is not typical for initial and boundary value problems initiated by equations of hyperbolic type.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2022m2/49-58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m2/49-58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文用正则解的形式研究了沿其特征曲线加载的一维波动方程边界控制问题的唯一可解性。求解方法是基于对该方程构造的达朗贝尔公式的模拟。我们指出当相同长度的区间上的初值和终值柯西数据为正方形时,解的定义域。乡绅的边长等于间隔长度。边界控制是由达朗贝尔公式的模拟分量建立的,而达朗贝尔公式又是由初始和最终的柯西数据唯一地建立的。值得注意的是,所寻求的边界控制的最终公式采用了归一化分布和定心,这对于由双曲型方程引发的初始和边值问题来说并不典型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary control problem for a hyperbolic equation loaded along one of its characteristics
This paper investigates the unique solvability of the boundary control problem for a one-dimensional wave equation loaded along one of its characteristic curves in terms of a regular solution. The solution method is based on an analogue of the d’Alembert formula constructed for this equation. We point out that the domain of definition for the solution of DE, when the initial and final Cauchy data given on intervals of the same length is a square. The side of the squire is equal to the interval length. The boundary controls are established by the components of an analogue of the d’Alembert formula, which, in turn, are uniquely established by the initial and final Cauchy data. It should be noted that the normalized distribution and centering are employed in the final formulas of sought boundary controls, which is not typical for initial and boundary value problems initiated by equations of hyperbolic type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信