Teresa Rubio , Maria Chernigovskaya , Susanna Marquez , Cristina Marti , Paula Izquierdo-Altarejos , Amparo Urios , Carmina Montoliu , Vicente Felipo , Ana Conesa , Victor Greiff , Sonia Tarazona
{"title":"Nextflow管道用于t细胞受体库重建和RNA测序数据分析","authors":"Teresa Rubio , Maria Chernigovskaya , Susanna Marquez , Cristina Marti , Paula Izquierdo-Altarejos , Amparo Urios , Carmina Montoliu , Vicente Felipo , Ana Conesa , Victor Greiff , Sonia Tarazona","doi":"10.1016/j.immuno.2022.100012","DOIUrl":null,"url":null,"abstract":"<div><p>T<strong>-</strong>cell receptor (TCR) analysis is relevant for the study of immune system diseases. The expression of TCRs is usually measured with targeted sequencing approaches where TCR genes are selectively amplified. However, many non-targeted RNA-seq experiments also contain reads of TCR genes, which could be leveraged for TCR expression analysis while reducing sample requirements and costs. Moreover, a step-by-step pipeline for the processing of transcriptome RNA-seq reads to deliver immune repertoire data is missing, and these types of analyses are usually not included in RNA-seq studies of immunological conditions. This represents a missed opportunity for complementing them with the analysis of the immune repertoire.</p><p>We present a Nextflow pipeline for T-cell receptor repertoire reconstruction and analysis from RNA sequencing data. We used a case study where TCR repertoire profiles were recovered from bulk RNA-seq of isolated CD4 T cells from control patients, cirrhotic patients without and with Minimal Hepatic Encephalopathy (MHE). MHE is a neuropsychiatric syndrome, mediated by peripheral inflammation, that may affect cirrhotic patients. After the recovery of 498-1,114 distinct TCR beta chains per patient, repertoire analysis of patients resulted in few public clones, high diversity and elevated within-repertoire sequence similarity, independently of immune status. Additionally, TCRs associated with celiac disease and inflammatory bowel disease were significantly overrepresented in MHE patient repertoires. The provided computational pipeline functions as a resource to facilitate TCR profiling from RNA-seq data boosting immunophenotype analyses of immunological diseases.</p></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"6 ","pages":"Article 100012"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667119022000040/pdfft?md5=91b0d931e25aed0127e660a05b33b628&pid=1-s2.0-S2667119022000040-main.pdf","citationCount":"3","resultStr":"{\"title\":\"A Nextflow pipeline for T-cell receptor repertoire reconstruction and analysis from RNA sequencing data\",\"authors\":\"Teresa Rubio , Maria Chernigovskaya , Susanna Marquez , Cristina Marti , Paula Izquierdo-Altarejos , Amparo Urios , Carmina Montoliu , Vicente Felipo , Ana Conesa , Victor Greiff , Sonia Tarazona\",\"doi\":\"10.1016/j.immuno.2022.100012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>T<strong>-</strong>cell receptor (TCR) analysis is relevant for the study of immune system diseases. The expression of TCRs is usually measured with targeted sequencing approaches where TCR genes are selectively amplified. However, many non-targeted RNA-seq experiments also contain reads of TCR genes, which could be leveraged for TCR expression analysis while reducing sample requirements and costs. Moreover, a step-by-step pipeline for the processing of transcriptome RNA-seq reads to deliver immune repertoire data is missing, and these types of analyses are usually not included in RNA-seq studies of immunological conditions. This represents a missed opportunity for complementing them with the analysis of the immune repertoire.</p><p>We present a Nextflow pipeline for T-cell receptor repertoire reconstruction and analysis from RNA sequencing data. We used a case study where TCR repertoire profiles were recovered from bulk RNA-seq of isolated CD4 T cells from control patients, cirrhotic patients without and with Minimal Hepatic Encephalopathy (MHE). MHE is a neuropsychiatric syndrome, mediated by peripheral inflammation, that may affect cirrhotic patients. After the recovery of 498-1,114 distinct TCR beta chains per patient, repertoire analysis of patients resulted in few public clones, high diversity and elevated within-repertoire sequence similarity, independently of immune status. Additionally, TCRs associated with celiac disease and inflammatory bowel disease were significantly overrepresented in MHE patient repertoires. The provided computational pipeline functions as a resource to facilitate TCR profiling from RNA-seq data boosting immunophenotype analyses of immunological diseases.</p></div>\",\"PeriodicalId\":73343,\"journal\":{\"name\":\"Immunoinformatics (Amsterdam, Netherlands)\",\"volume\":\"6 \",\"pages\":\"Article 100012\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667119022000040/pdfft?md5=91b0d931e25aed0127e660a05b33b628&pid=1-s2.0-S2667119022000040-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunoinformatics (Amsterdam, Netherlands)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667119022000040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunoinformatics (Amsterdam, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667119022000040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Nextflow pipeline for T-cell receptor repertoire reconstruction and analysis from RNA sequencing data
T-cell receptor (TCR) analysis is relevant for the study of immune system diseases. The expression of TCRs is usually measured with targeted sequencing approaches where TCR genes are selectively amplified. However, many non-targeted RNA-seq experiments also contain reads of TCR genes, which could be leveraged for TCR expression analysis while reducing sample requirements and costs. Moreover, a step-by-step pipeline for the processing of transcriptome RNA-seq reads to deliver immune repertoire data is missing, and these types of analyses are usually not included in RNA-seq studies of immunological conditions. This represents a missed opportunity for complementing them with the analysis of the immune repertoire.
We present a Nextflow pipeline for T-cell receptor repertoire reconstruction and analysis from RNA sequencing data. We used a case study where TCR repertoire profiles were recovered from bulk RNA-seq of isolated CD4 T cells from control patients, cirrhotic patients without and with Minimal Hepatic Encephalopathy (MHE). MHE is a neuropsychiatric syndrome, mediated by peripheral inflammation, that may affect cirrhotic patients. After the recovery of 498-1,114 distinct TCR beta chains per patient, repertoire analysis of patients resulted in few public clones, high diversity and elevated within-repertoire sequence similarity, independently of immune status. Additionally, TCRs associated with celiac disease and inflammatory bowel disease were significantly overrepresented in MHE patient repertoires. The provided computational pipeline functions as a resource to facilitate TCR profiling from RNA-seq data boosting immunophenotype analyses of immunological diseases.