{"title":"关于伯灵测度代数","authors":"Ross Stokke","doi":"10.14712/1213-7243.2022.016","DOIUrl":null,"url":null,"abstract":"We show how the measure theory of regular compacted-Borel measures defined on the $\\delta$-ring of compacted-Borel subsets of a weighted locally compact group $(G,\\omega)$ provides a compatible framework for defining the corresponding Beurling measure algebra ${\\cal M}(G,\\omega)$, thus filling a gap in the literature.","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Beurling measure algebras\",\"authors\":\"Ross Stokke\",\"doi\":\"10.14712/1213-7243.2022.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how the measure theory of regular compacted-Borel measures defined on the $\\\\delta$-ring of compacted-Borel subsets of a weighted locally compact group $(G,\\\\omega)$ provides a compatible framework for defining the corresponding Beurling measure algebra ${\\\\cal M}(G,\\\\omega)$, thus filling a gap in the literature.\",\"PeriodicalId\":44396,\"journal\":{\"name\":\"Commentationes Mathematicae Universitatis Carolinae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentationes Mathematicae Universitatis Carolinae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14712/1213-7243.2022.016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentationes Mathematicae Universitatis Carolinae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14712/1213-7243.2022.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
We show how the measure theory of regular compacted-Borel measures defined on the $\delta$-ring of compacted-Borel subsets of a weighted locally compact group $(G,\omega)$ provides a compatible framework for defining the corresponding Beurling measure algebra ${\cal M}(G,\omega)$, thus filling a gap in the literature.