Cleto B. Miranda-Neto, D. S. Queiroz, Thyago S. Souza
{"title":"关于广义Ulrich模的理论","authors":"Cleto B. Miranda-Neto, D. S. Queiroz, Thyago S. Souza","doi":"10.2140/pjm.2023.323.307","DOIUrl":null,"url":null,"abstract":"In this paper we further develop the theory of generalized Ulrich modules introduced in 2014 by Goto et al. Our main goal is to address the problem of when the operations of taking the Hom functor and horizontal linkage preserve the Ulrich property. One of the applications is a new characterization of quadratic hypersurface rings. Moreover, in the Gorenstein case, we deduce that applying linkage to sufficiently high syzygy modules of Ulrich ideals yields Ulrich modules. Finally, we explore connections to the theory of modules with minimal multiplicity, and as a byproduct we determine the Chern number of an Ulrich module as well as the Castelnuovo-Mumford regularity of its Rees module.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the theory of generalized Ulrich modules\",\"authors\":\"Cleto B. Miranda-Neto, D. S. Queiroz, Thyago S. Souza\",\"doi\":\"10.2140/pjm.2023.323.307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we further develop the theory of generalized Ulrich modules introduced in 2014 by Goto et al. Our main goal is to address the problem of when the operations of taking the Hom functor and horizontal linkage preserve the Ulrich property. One of the applications is a new characterization of quadratic hypersurface rings. Moreover, in the Gorenstein case, we deduce that applying linkage to sufficiently high syzygy modules of Ulrich ideals yields Ulrich modules. Finally, we explore connections to the theory of modules with minimal multiplicity, and as a byproduct we determine the Chern number of an Ulrich module as well as the Castelnuovo-Mumford regularity of its Rees module.\",\"PeriodicalId\":54651,\"journal\":{\"name\":\"Pacific Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.323.307\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.323.307","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper we further develop the theory of generalized Ulrich modules introduced in 2014 by Goto et al. Our main goal is to address the problem of when the operations of taking the Hom functor and horizontal linkage preserve the Ulrich property. One of the applications is a new characterization of quadratic hypersurface rings. Moreover, in the Gorenstein case, we deduce that applying linkage to sufficiently high syzygy modules of Ulrich ideals yields Ulrich modules. Finally, we explore connections to the theory of modules with minimal multiplicity, and as a byproduct we determine the Chern number of an Ulrich module as well as the Castelnuovo-Mumford regularity of its Rees module.
期刊介绍:
Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.