{"title":"单自由度系统动力学分析与控制器性能评价","authors":"I. I. Gorial","doi":"10.21307/ijssis-2020-018","DOIUrl":null,"url":null,"abstract":"Abstract In automation and mechatronics applications, mass spring damper system (MSDS) plays a significant role in ensuring model serviceability and safety. The system’s dynamic of this mechanical system is quite challenging to control. In this paper, the system is a single degree of freedom (SDOF) spring mass system. The issue of performance evaluation of three controllers, linear proportional integral derivate (LPID), nonlinear PID (NPID), and fuzzy logic controller (FLC), is presented. FLC demands that experience be built on information based on a rule. It has two inputs, one of which is the displacement and the other is the velocity, and force is calculated for forced damped vibration control for a single degree of freedom system. The method used for defuzzification is the center of gravity (COG). However, effective control of a system depends largely on the accuracy of the mathematical model that predicts its dynamics behavior. The mathematical model for the MSDS is based on a set of nonlinear second-order ordinary differential equations to simulate the dynamic accurately. The proposed control schemes are implemented with the aid of MATLAB and SIMULINK to investigate the system performance. The sequence of the three controllers in terms of performance is as follows: the first of them is FLC and then in some dominant cases this is NPID by comparison with the LPID and one without any controller cases. Also, FLC displays more effectiveness and efficiency than the system without this controller after a comparative of system analysis performance evaluation.","PeriodicalId":45623,"journal":{"name":"International Journal on Smart Sensing and Intelligent Systems","volume":" ","pages":"1 - 12"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical analysis and controllers performance evaluation for single degree-of-freedom system\",\"authors\":\"I. I. Gorial\",\"doi\":\"10.21307/ijssis-2020-018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In automation and mechatronics applications, mass spring damper system (MSDS) plays a significant role in ensuring model serviceability and safety. The system’s dynamic of this mechanical system is quite challenging to control. In this paper, the system is a single degree of freedom (SDOF) spring mass system. The issue of performance evaluation of three controllers, linear proportional integral derivate (LPID), nonlinear PID (NPID), and fuzzy logic controller (FLC), is presented. FLC demands that experience be built on information based on a rule. It has two inputs, one of which is the displacement and the other is the velocity, and force is calculated for forced damped vibration control for a single degree of freedom system. The method used for defuzzification is the center of gravity (COG). However, effective control of a system depends largely on the accuracy of the mathematical model that predicts its dynamics behavior. The mathematical model for the MSDS is based on a set of nonlinear second-order ordinary differential equations to simulate the dynamic accurately. The proposed control schemes are implemented with the aid of MATLAB and SIMULINK to investigate the system performance. The sequence of the three controllers in terms of performance is as follows: the first of them is FLC and then in some dominant cases this is NPID by comparison with the LPID and one without any controller cases. Also, FLC displays more effectiveness and efficiency than the system without this controller after a comparative of system analysis performance evaluation.\",\"PeriodicalId\":45623,\"journal\":{\"name\":\"International Journal on Smart Sensing and Intelligent Systems\",\"volume\":\" \",\"pages\":\"1 - 12\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Smart Sensing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21307/ijssis-2020-018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Smart Sensing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/ijssis-2020-018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dynamical analysis and controllers performance evaluation for single degree-of-freedom system
Abstract In automation and mechatronics applications, mass spring damper system (MSDS) plays a significant role in ensuring model serviceability and safety. The system’s dynamic of this mechanical system is quite challenging to control. In this paper, the system is a single degree of freedom (SDOF) spring mass system. The issue of performance evaluation of three controllers, linear proportional integral derivate (LPID), nonlinear PID (NPID), and fuzzy logic controller (FLC), is presented. FLC demands that experience be built on information based on a rule. It has two inputs, one of which is the displacement and the other is the velocity, and force is calculated for forced damped vibration control for a single degree of freedom system. The method used for defuzzification is the center of gravity (COG). However, effective control of a system depends largely on the accuracy of the mathematical model that predicts its dynamics behavior. The mathematical model for the MSDS is based on a set of nonlinear second-order ordinary differential equations to simulate the dynamic accurately. The proposed control schemes are implemented with the aid of MATLAB and SIMULINK to investigate the system performance. The sequence of the three controllers in terms of performance is as follows: the first of them is FLC and then in some dominant cases this is NPID by comparison with the LPID and one without any controller cases. Also, FLC displays more effectiveness and efficiency than the system without this controller after a comparative of system analysis performance evaluation.
期刊介绍:
nternational Journal on Smart Sensing and Intelligent Systems (S2IS) is a rapid and high-quality international forum wherein academics, researchers and practitioners may publish their high-quality, original, and state-of-the-art papers describing theoretical aspects, system architectures, analysis and design techniques, and implementation experiences in intelligent sensing technologies. The journal publishes articles reporting substantive results on a wide range of smart sensing approaches applied to variety of domain problems, including but not limited to: Ambient Intelligence and Smart Environment Analysis, Evaluation, and Test of Smart Sensors Intelligent Management of Sensors Fundamentals of Smart Sensing Principles and Mechanisms Materials and its Applications for Smart Sensors Smart Sensing Applications, Hardware, Software, Systems, and Technologies Smart Sensors in Multidisciplinary Domains and Problems Smart Sensors in Science and Engineering Smart Sensors in Social Science and Humanity