由$k$ m$-Cycles生成的置换群上cayley图的距离

IF 0.6 Q3 MATHEMATICS
Z. Mostaghim, Mohammad Hossein Ghaffari
{"title":"由$k$ m$-Cycles生成的置换群上cayley图的距离","authors":"Z. Mostaghim, Mohammad Hossein Ghaffari","doi":"10.22108/TOC.2017.21473","DOIUrl":null,"url":null,"abstract":"In this paper, we extend upon the results of B. Suceavă and R. Stong [Amer. Math. Monthly, 110 (2003) 162–162], which they computed the minimum number of 3-cycles needed to generate an even permutation. Let Ωk,m be the set of all permutations of the form c1c2 · · · ck where ci’s are arbitrary m-cycles in Sn. Suppose that Γ n k,m be the Cayley graph on subgroup of Sn generated by all permutations in Ωk,m. We find a shortest path joining identity and any vertex of Γ n k,m, for arbitrary natural number k, and m = 2, 3, 4. Also, we calculate the diameter of these Cayley graphs. As an application, we present an algorithm for finding a short expression of a permutation as products of given permutations.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"6 1","pages":"45-59"},"PeriodicalIF":0.6000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distance in cayley graphs on permutation groups generated by $k$ $m$-Cycles\",\"authors\":\"Z. Mostaghim, Mohammad Hossein Ghaffari\",\"doi\":\"10.22108/TOC.2017.21473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend upon the results of B. Suceavă and R. Stong [Amer. Math. Monthly, 110 (2003) 162–162], which they computed the minimum number of 3-cycles needed to generate an even permutation. Let Ωk,m be the set of all permutations of the form c1c2 · · · ck where ci’s are arbitrary m-cycles in Sn. Suppose that Γ n k,m be the Cayley graph on subgroup of Sn generated by all permutations in Ωk,m. We find a shortest path joining identity and any vertex of Γ n k,m, for arbitrary natural number k, and m = 2, 3, 4. Also, we calculate the diameter of these Cayley graphs. As an application, we present an algorithm for finding a short expression of a permutation as products of given permutations.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"6 1\",\"pages\":\"45-59\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2017.21473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.21473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们扩展了B. suceavei和R. strong [Amer]的结果。数学。每月,110(2003)162-162],他们计算了生成偶数排列所需的最小3循环数。设Ωk,m为c1c2···ck形式的所有排列的集合,其中ci是Sn中的任意m环。设Γ n k,m为Ωk,m中所有排列生成的Sn子群上的Cayley图。对于任意自然数k,m = 2,3,4,我们找到一条最短路径连接单位单位和任意顶点Γ n k,m。同时,我们计算这些Cayley图的直径。作为一个应用,我们提出了一种算法来寻找一个排列的短表达式作为给定排列的乘积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distance in cayley graphs on permutation groups generated by $k$ $m$-Cycles
In this paper, we extend upon the results of B. Suceavă and R. Stong [Amer. Math. Monthly, 110 (2003) 162–162], which they computed the minimum number of 3-cycles needed to generate an even permutation. Let Ωk,m be the set of all permutations of the form c1c2 · · · ck where ci’s are arbitrary m-cycles in Sn. Suppose that Γ n k,m be the Cayley graph on subgroup of Sn generated by all permutations in Ωk,m. We find a shortest path joining identity and any vertex of Γ n k,m, for arbitrary natural number k, and m = 2, 3, 4. Also, we calculate the diameter of these Cayley graphs. As an application, we present an algorithm for finding a short expression of a permutation as products of given permutations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信