{"title":"m重对称双单价函数子类的系数估计","authors":"A. Motamednezhad, S. Salehian, N. Magesh","doi":"10.46793/kgjmat2203.395m","DOIUrl":null,"url":null,"abstract":"In the present paper, a general subclass Mh,p Σm (λ, γ) of the m-Fold symmetric bi-univalent functions is deĄned. Also, the estimates of the TaylorMaclaurin coefficients |am+1|, |a2m+1| and Fekete-Szegö problems are obtained for functions in this new subclass. The results presented in this paper would generalize and improve some recent works of several earlier authors.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Coefficient Estimates for Subclass of m-Fold Symmetric Bi- Univalent Functions\",\"authors\":\"A. Motamednezhad, S. Salehian, N. Magesh\",\"doi\":\"10.46793/kgjmat2203.395m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, a general subclass Mh,p Σm (λ, γ) of the m-Fold symmetric bi-univalent functions is deĄned. Also, the estimates of the TaylorMaclaurin coefficients |am+1|, |a2m+1| and Fekete-Szegö problems are obtained for functions in this new subclass. The results presented in this paper would generalize and improve some recent works of several earlier authors.\",\"PeriodicalId\":44902,\"journal\":{\"name\":\"Kragujevac Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kragujevac Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/kgjmat2203.395m\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2203.395m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Coefficient Estimates for Subclass of m-Fold Symmetric Bi- Univalent Functions
In the present paper, a general subclass Mh,p Σm (λ, γ) of the m-Fold symmetric bi-univalent functions is deĄned. Also, the estimates of the TaylorMaclaurin coefficients |am+1|, |a2m+1| and Fekete-Szegö problems are obtained for functions in this new subclass. The results presented in this paper would generalize and improve some recent works of several earlier authors.