S. Sivapriya, S. Gunalan, A. Mugesh, J. Niranjan, K. Yuvaraj
{"title":"铜渣和钢渣在砂柱中作为部分替代材料稳定软粘土的优势研究","authors":"S. Sivapriya, S. Gunalan, A. Mugesh, J. Niranjan, K. Yuvaraj","doi":"10.1080/19386362.2023.2239686","DOIUrl":null,"url":null,"abstract":"ABSTRACT The current study aims in finding the utilization of Industrial waste such as copper and steel slags as a partial replacement material for sand in Sand Compaction Pile (SCP) in proportions of 5%, 10%, 15%, 20%, 30%, and 40% by weight. From the direct shear tests, it is observed that the angle of internal friction increases from 27.59° to 40.1° and 34.82° for copper and steel slags, respectively. The tests are done by installing the SCP in a soft clay in California Bearing Ratio mould and it is tested under soaked and unsoaked conditions. The optimum percentage found from the study for both the slag material is 30%. Tests were also done by air-curing the composite soil within the mould for 7 days and water-curing the sample under soaked conditions for 4 days for the optimum replacement percentage.","PeriodicalId":47238,"journal":{"name":"International Journal of Geotechnical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the advantage of copper and steel slags as partial replacement material in a sand compaction column in stabilizing the soft clay\",\"authors\":\"S. Sivapriya, S. Gunalan, A. Mugesh, J. Niranjan, K. Yuvaraj\",\"doi\":\"10.1080/19386362.2023.2239686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The current study aims in finding the utilization of Industrial waste such as copper and steel slags as a partial replacement material for sand in Sand Compaction Pile (SCP) in proportions of 5%, 10%, 15%, 20%, 30%, and 40% by weight. From the direct shear tests, it is observed that the angle of internal friction increases from 27.59° to 40.1° and 34.82° for copper and steel slags, respectively. The tests are done by installing the SCP in a soft clay in California Bearing Ratio mould and it is tested under soaked and unsoaked conditions. The optimum percentage found from the study for both the slag material is 30%. Tests were also done by air-curing the composite soil within the mould for 7 days and water-curing the sample under soaked conditions for 4 days for the optimum replacement percentage.\",\"PeriodicalId\":47238,\"journal\":{\"name\":\"International Journal of Geotechnical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geotechnical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19386362.2023.2239686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geotechnical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19386362.2023.2239686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Investigating the advantage of copper and steel slags as partial replacement material in a sand compaction column in stabilizing the soft clay
ABSTRACT The current study aims in finding the utilization of Industrial waste such as copper and steel slags as a partial replacement material for sand in Sand Compaction Pile (SCP) in proportions of 5%, 10%, 15%, 20%, 30%, and 40% by weight. From the direct shear tests, it is observed that the angle of internal friction increases from 27.59° to 40.1° and 34.82° for copper and steel slags, respectively. The tests are done by installing the SCP in a soft clay in California Bearing Ratio mould and it is tested under soaked and unsoaked conditions. The optimum percentage found from the study for both the slag material is 30%. Tests were also done by air-curing the composite soil within the mould for 7 days and water-curing the sample under soaked conditions for 4 days for the optimum replacement percentage.