$\Gamma_1(4)$上半积分权模形式泰勒系数的$p$-adic性质

Pub Date : 2021-09-17 DOI:10.11650/tjm/220802
Jigu Kim, Yoonjin Lee
{"title":"$\\Gamma_1(4)$上半积分权模形式泰勒系数的$p$-adic性质","authors":"Jigu Kim, Yoonjin Lee","doi":"10.11650/tjm/220802","DOIUrl":null,"url":null,"abstract":". For a prime p ≡ 3 (mod 4) and m ≥ 2, Romik raised a question about whether the Taylor coefficients around √− 1 of the classical Jacobi theta function θ 3 eventually vanish modulo p m . This question can be extended to a class of modular forms of half-integral weight on Γ 1 (4) and CM points; in this paper, we prove an affirmative answer to it for primes p ≥ 5. Our result is also a generalization of the results of Larson and Smith for modular forms of integral weight on SL 2 ( Z ).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$p$-adic Properties for Taylor Coefficients of Half-integral Weight Modular Forms on $\\\\Gamma_1(4)$\",\"authors\":\"Jigu Kim, Yoonjin Lee\",\"doi\":\"10.11650/tjm/220802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". For a prime p ≡ 3 (mod 4) and m ≥ 2, Romik raised a question about whether the Taylor coefficients around √− 1 of the classical Jacobi theta function θ 3 eventually vanish modulo p m . This question can be extended to a class of modular forms of half-integral weight on Γ 1 (4) and CM points; in this paper, we prove an affirmative answer to it for primes p ≥ 5. Our result is also a generalization of the results of Larson and Smith for modular forms of integral weight on SL 2 ( Z ).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/220802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于素数p lect 3(mod 4)和m≥2,Romik提出了一个问题,即经典Jacobiθ函数θ3的√−1附近的Taylor系数是否最终模p m消失。这个问题可以推广到Γ1(4)和CM点上半积分权的一类模形式;本文证明了素数p≥5的一个有效答案。我们的结果也是Larson和Smith关于SL 2(Z)上积分权的模形式的结果的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
$p$-adic Properties for Taylor Coefficients of Half-integral Weight Modular Forms on $\Gamma_1(4)$
. For a prime p ≡ 3 (mod 4) and m ≥ 2, Romik raised a question about whether the Taylor coefficients around √− 1 of the classical Jacobi theta function θ 3 eventually vanish modulo p m . This question can be extended to a class of modular forms of half-integral weight on Γ 1 (4) and CM points; in this paper, we prove an affirmative answer to it for primes p ≥ 5. Our result is also a generalization of the results of Larson and Smith for modular forms of integral weight on SL 2 ( Z ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信