V. Sivamaran, V. Balasubramanian, M. Gopalakrishnan, V. Viswabaskaran, A. Gourav Rao, S. Selvamani
{"title":"碳纳米管、纳米环和纳米球:化学气相沉积的合成和制备——综述","authors":"V. Sivamaran, V. Balasubramanian, M. Gopalakrishnan, V. Viswabaskaran, A. Gourav Rao, S. Selvamani","doi":"10.1177/18479804221079495","DOIUrl":null,"url":null,"abstract":"Research work published since 2010 on the synthesis of carbon nanotubes (CNTs), carbon nanorings (CNRs), and carbon nanospheres (CNSs) using the chemical vapor deposition (CVD) process is reviewed. The effect of CVD process parameters on carbon nanomaterials morphology, such as diameter, yield, and quality was reviewed. The mechanism of CVD formation and growth of carbon nanomaterials was reviewed in detail. The catalyst materials used to synthesize these carbon allotropies were discussed in detail. The formation mechanism of carbon nanomaterials indicates that the variables of the CVD process parameters that appear to control growth are not directly manipulated in the CVD process. Rather, it is determined by complex interactions between variables. The impact of CNTs, CNRs, and CNSs was discussed using the schematic representation. The researchers who published the articles in the CNTs, CNRs, and CNSs for the past decade were discussed. From the intensive literature review, it was found that as compared to CNTs there is not much research was undertaken in synthesizing spheres and rings. But spheres and rings are capable of performing better than CNTs structure in energy storage, and sensors.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Carbon nanotubes, nanorings, and nanospheres: Synthesis and fabrication via chemical vapor deposition—a review\",\"authors\":\"V. Sivamaran, V. Balasubramanian, M. Gopalakrishnan, V. Viswabaskaran, A. Gourav Rao, S. Selvamani\",\"doi\":\"10.1177/18479804221079495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research work published since 2010 on the synthesis of carbon nanotubes (CNTs), carbon nanorings (CNRs), and carbon nanospheres (CNSs) using the chemical vapor deposition (CVD) process is reviewed. The effect of CVD process parameters on carbon nanomaterials morphology, such as diameter, yield, and quality was reviewed. The mechanism of CVD formation and growth of carbon nanomaterials was reviewed in detail. The catalyst materials used to synthesize these carbon allotropies were discussed in detail. The formation mechanism of carbon nanomaterials indicates that the variables of the CVD process parameters that appear to control growth are not directly manipulated in the CVD process. Rather, it is determined by complex interactions between variables. The impact of CNTs, CNRs, and CNSs was discussed using the schematic representation. The researchers who published the articles in the CNTs, CNRs, and CNSs for the past decade were discussed. From the intensive literature review, it was found that as compared to CNTs there is not much research was undertaken in synthesizing spheres and rings. But spheres and rings are capable of performing better than CNTs structure in energy storage, and sensors.\",\"PeriodicalId\":19018,\"journal\":{\"name\":\"Nanomaterials and Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials and Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/18479804221079495\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials and Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/18479804221079495","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Carbon nanotubes, nanorings, and nanospheres: Synthesis and fabrication via chemical vapor deposition—a review
Research work published since 2010 on the synthesis of carbon nanotubes (CNTs), carbon nanorings (CNRs), and carbon nanospheres (CNSs) using the chemical vapor deposition (CVD) process is reviewed. The effect of CVD process parameters on carbon nanomaterials morphology, such as diameter, yield, and quality was reviewed. The mechanism of CVD formation and growth of carbon nanomaterials was reviewed in detail. The catalyst materials used to synthesize these carbon allotropies were discussed in detail. The formation mechanism of carbon nanomaterials indicates that the variables of the CVD process parameters that appear to control growth are not directly manipulated in the CVD process. Rather, it is determined by complex interactions between variables. The impact of CNTs, CNRs, and CNSs was discussed using the schematic representation. The researchers who published the articles in the CNTs, CNRs, and CNSs for the past decade were discussed. From the intensive literature review, it was found that as compared to CNTs there is not much research was undertaken in synthesizing spheres and rings. But spheres and rings are capable of performing better than CNTs structure in energy storage, and sensors.
期刊介绍:
Nanomaterials and Nanotechnology is a JCR ranked, peer-reviewed open access journal addressed to a cross-disciplinary readership including scientists, researchers and professionals in both academia and industry with an interest in nanoscience and nanotechnology. The scope comprises (but is not limited to) the fundamental aspects and applications of nanoscience and nanotechnology