Sankardeep Chakraborty, Seungbum Jo, K. Sadakane, Srinivasa Rao Satti
{"title":"SP, Block-Cactus和3-Leaf Power图的简洁数据结构","authors":"Sankardeep Chakraborty, Seungbum Jo, K. Sadakane, Srinivasa Rao Satti","doi":"10.1142/s012905412341006x","DOIUrl":null,"url":null,"abstract":"We design succinct encodings of series-parallel, block-cactus and 3-leaf power graphs while supporting the basic navigational queries such as degree, adjacency and neighborhood optimally in the RAM model with logarithmic word size. One salient feature of our representation is that it can achieve optimal space even though the exact space lower bound for these graph classes is not known. For these graph classes, we provide succinct data structures with optimal query support for the first time in the literature. For series-parallel multigraphs, our work also extends the works of Uno et al. (Disc. Math. Alg. and Appl., 2013) and Blelloch and Farzan (CPM, 2010) to produce optimal bounds.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Succinct Data Structures for SP, Block-Cactus and 3-Leaf Power Graphs\",\"authors\":\"Sankardeep Chakraborty, Seungbum Jo, K. Sadakane, Srinivasa Rao Satti\",\"doi\":\"10.1142/s012905412341006x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design succinct encodings of series-parallel, block-cactus and 3-leaf power graphs while supporting the basic navigational queries such as degree, adjacency and neighborhood optimally in the RAM model with logarithmic word size. One salient feature of our representation is that it can achieve optimal space even though the exact space lower bound for these graph classes is not known. For these graph classes, we provide succinct data structures with optimal query support for the first time in the literature. For series-parallel multigraphs, our work also extends the works of Uno et al. (Disc. Math. Alg. and Appl., 2013) and Blelloch and Farzan (CPM, 2010) to produce optimal bounds.\",\"PeriodicalId\":50323,\"journal\":{\"name\":\"International Journal of Foundations of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Foundations of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s012905412341006x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s012905412341006x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Succinct Data Structures for SP, Block-Cactus and 3-Leaf Power Graphs
We design succinct encodings of series-parallel, block-cactus and 3-leaf power graphs while supporting the basic navigational queries such as degree, adjacency and neighborhood optimally in the RAM model with logarithmic word size. One salient feature of our representation is that it can achieve optimal space even though the exact space lower bound for these graph classes is not known. For these graph classes, we provide succinct data structures with optimal query support for the first time in the literature. For series-parallel multigraphs, our work also extends the works of Uno et al. (Disc. Math. Alg. and Appl., 2013) and Blelloch and Farzan (CPM, 2010) to produce optimal bounds.
期刊介绍:
The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include:
- Algebraic theory of computing and formal systems
- Algorithm and system implementation issues
- Approximation, probabilistic, and randomized algorithms
- Automata and formal languages
- Automated deduction
- Combinatorics and graph theory
- Complexity theory
- Computational biology and bioinformatics
- Cryptography
- Database theory
- Data structures
- Design and analysis of algorithms
- DNA computing
- Foundations of computer security
- Foundations of high-performance computing