{"title":"基于机器视觉的植物表型特征估计与分类研究综述","authors":"Shrikrishna Kolhar , Jayant Jagtap","doi":"10.1016/j.inpa.2021.02.006","DOIUrl":null,"url":null,"abstract":"<div><p>Today there is a rapid development taking place in phenotyping of plants using non-destructive image based machine vision techniques. Machine vision based plant phenotyping ranges from single plant trait estimation to broad assessment of crop canopy for thousands of plants in the field. Plant phenotyping systems either use single imaging method or integrative approach signifying simultaneous use of some of the imaging techniques like visible red, green and blue (RGB) imaging, thermal imaging, chlorophyll fluorescence imaging (CFIM), hyperspectral imaging, 3-dimensional (3-D) imaging or high resolution volumetric imaging. This paper provides an overview of imaging techniques and their applications in the field of plant phenotyping. This paper presents a comprehensive survey on recent machine vision methods for plant trait estimation and classification. In this paper, information about publicly available datasets is provided for uniform comparison among the state-of-the-art phenotyping methods. This paper also presents future research directions related to the use of deep learning based machine vision algorithms for structural (2-D and 3-D), physiological and temporal trait estimation, and classification studies in plants.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"10 1","pages":"Pages 114-135"},"PeriodicalIF":7.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.inpa.2021.02.006","citationCount":"30","resultStr":"{\"title\":\"Plant trait estimation and classification studies in plant phenotyping using machine vision – A review\",\"authors\":\"Shrikrishna Kolhar , Jayant Jagtap\",\"doi\":\"10.1016/j.inpa.2021.02.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Today there is a rapid development taking place in phenotyping of plants using non-destructive image based machine vision techniques. Machine vision based plant phenotyping ranges from single plant trait estimation to broad assessment of crop canopy for thousands of plants in the field. Plant phenotyping systems either use single imaging method or integrative approach signifying simultaneous use of some of the imaging techniques like visible red, green and blue (RGB) imaging, thermal imaging, chlorophyll fluorescence imaging (CFIM), hyperspectral imaging, 3-dimensional (3-D) imaging or high resolution volumetric imaging. This paper provides an overview of imaging techniques and their applications in the field of plant phenotyping. This paper presents a comprehensive survey on recent machine vision methods for plant trait estimation and classification. In this paper, information about publicly available datasets is provided for uniform comparison among the state-of-the-art phenotyping methods. This paper also presents future research directions related to the use of deep learning based machine vision algorithms for structural (2-D and 3-D), physiological and temporal trait estimation, and classification studies in plants.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"10 1\",\"pages\":\"Pages 114-135\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.inpa.2021.02.006\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317321000238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Plant trait estimation and classification studies in plant phenotyping using machine vision – A review
Today there is a rapid development taking place in phenotyping of plants using non-destructive image based machine vision techniques. Machine vision based plant phenotyping ranges from single plant trait estimation to broad assessment of crop canopy for thousands of plants in the field. Plant phenotyping systems either use single imaging method or integrative approach signifying simultaneous use of some of the imaging techniques like visible red, green and blue (RGB) imaging, thermal imaging, chlorophyll fluorescence imaging (CFIM), hyperspectral imaging, 3-dimensional (3-D) imaging or high resolution volumetric imaging. This paper provides an overview of imaging techniques and their applications in the field of plant phenotyping. This paper presents a comprehensive survey on recent machine vision methods for plant trait estimation and classification. In this paper, information about publicly available datasets is provided for uniform comparison among the state-of-the-art phenotyping methods. This paper also presents future research directions related to the use of deep learning based machine vision algorithms for structural (2-D and 3-D), physiological and temporal trait estimation, and classification studies in plants.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining