{"title":"防止牧场退化:澳大利亚和中国的共同问题","authors":"K. Hodgkinson, Deli Wang","doi":"10.1071/rj20068","DOIUrl":null,"url":null,"abstract":"\nRangeland degradation continues in Australia, China and elsewhere. The stocking rate/animal production relationship has been a successful concept for pastoralists wanting to avoid degradation and/or raise incomes. However, there are no means available of alerting pastoralists to the approach of critical thresholds that would ‘flip’ rangelands into alternative states when grazing-stressed. Critical threshold forecasting for avoiding degradation (and seizing restoration opportunities) could be made available online. Research has yet to find, assemble and test the set of indicators needed to forecast the approach of critical thresholds envisaged in State-and-Transition thinking. Forecasting at paddock, property and regional scales would have to involve high-performance computing because the thresholds will be space and time dependent. The case for Australia and China to contribute cooperatively to this research effort rests on the large number of contrasting rangeland ecosystems across the two countries that represent rangelands globally. A proven history of past collaboration is extant with existing research programs on plant population dynamics, landscape patchiness/leakiness and soil biota status, and their responses to the separate and combined effects of climate and grazing animals. The road to adoption would involve partnerships with pastoralists throughout the process, remote sensing to identify approaching thresholds in real time, application of high-performance computing and possibly artificial intelligence, and packaging of forecasts for different socio-economic rangeland systems.\n","PeriodicalId":20810,"journal":{"name":"Rangeland Journal","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Preventing rangeland degradation: a shared problem for Australia and China\",\"authors\":\"K. Hodgkinson, Deli Wang\",\"doi\":\"10.1071/rj20068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nRangeland degradation continues in Australia, China and elsewhere. The stocking rate/animal production relationship has been a successful concept for pastoralists wanting to avoid degradation and/or raise incomes. However, there are no means available of alerting pastoralists to the approach of critical thresholds that would ‘flip’ rangelands into alternative states when grazing-stressed. Critical threshold forecasting for avoiding degradation (and seizing restoration opportunities) could be made available online. Research has yet to find, assemble and test the set of indicators needed to forecast the approach of critical thresholds envisaged in State-and-Transition thinking. Forecasting at paddock, property and regional scales would have to involve high-performance computing because the thresholds will be space and time dependent. The case for Australia and China to contribute cooperatively to this research effort rests on the large number of contrasting rangeland ecosystems across the two countries that represent rangelands globally. A proven history of past collaboration is extant with existing research programs on plant population dynamics, landscape patchiness/leakiness and soil biota status, and their responses to the separate and combined effects of climate and grazing animals. The road to adoption would involve partnerships with pastoralists throughout the process, remote sensing to identify approaching thresholds in real time, application of high-performance computing and possibly artificial intelligence, and packaging of forecasts for different socio-economic rangeland systems.\\n\",\"PeriodicalId\":20810,\"journal\":{\"name\":\"Rangeland Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rangeland Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1071/rj20068\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rangeland Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1071/rj20068","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Preventing rangeland degradation: a shared problem for Australia and China
Rangeland degradation continues in Australia, China and elsewhere. The stocking rate/animal production relationship has been a successful concept for pastoralists wanting to avoid degradation and/or raise incomes. However, there are no means available of alerting pastoralists to the approach of critical thresholds that would ‘flip’ rangelands into alternative states when grazing-stressed. Critical threshold forecasting for avoiding degradation (and seizing restoration opportunities) could be made available online. Research has yet to find, assemble and test the set of indicators needed to forecast the approach of critical thresholds envisaged in State-and-Transition thinking. Forecasting at paddock, property and regional scales would have to involve high-performance computing because the thresholds will be space and time dependent. The case for Australia and China to contribute cooperatively to this research effort rests on the large number of contrasting rangeland ecosystems across the two countries that represent rangelands globally. A proven history of past collaboration is extant with existing research programs on plant population dynamics, landscape patchiness/leakiness and soil biota status, and their responses to the separate and combined effects of climate and grazing animals. The road to adoption would involve partnerships with pastoralists throughout the process, remote sensing to identify approaching thresholds in real time, application of high-performance computing and possibly artificial intelligence, and packaging of forecasts for different socio-economic rangeland systems.
期刊介绍:
The Rangeland Journal publishes original work that makes a significant contribution to understanding the biophysical, social, cultural, economic, and policy influences affecting rangeland use and management throughout the world. Rangelands are defined broadly and include all those environments where natural ecological processes predominate, and where values and benefits are based primarily on natural resources.
Articles may present the results of original research, contributions to theory or new conclusions reached from the review of a topic. Their structure need not conform to that of standard scientific articles but writing style must be clear and concise. All material presented must be well documented, critically analysed and objectively presented. All papers are peer-reviewed.
The Rangeland Journal is published on behalf of the Australian Rangeland Society.