相对奇异范畴和奇异等价

Pub Date : 2021-08-18 DOI:10.1007/s40062-021-00289-1
Rasool Hafezi
{"title":"相对奇异范畴和奇异等价","authors":"Rasool Hafezi","doi":"10.1007/s40062-021-00289-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>R</i> be a right noetherian ring. We introduce the concept of relative singularity category <span>\\(\\Delta _{\\mathcal {X} }(R)\\)</span> of <i>R</i> with respect to a contravariantly finite subcategory <span>\\(\\mathcal {X} \\)</span> of <span>\\({\\text {{mod{-}}}}R.\\)</span> Along with some finiteness conditions on <span>\\(\\mathcal {X} \\)</span>, we prove that <span>\\(\\Delta _{\\mathcal {X} }(R)\\)</span> is triangle equivalent to a subcategory of the homotopy category <span>\\(\\mathbb {K} _\\mathrm{{ac}}(\\mathcal {X} )\\)</span> of exact complexes over <span>\\(\\mathcal {X} \\)</span>. As an application, a new description of the classical singularity category <span>\\(\\mathbb {D} _\\mathrm{{sg}}(R)\\)</span> is given. The relative singularity categories are applied to lift a stable equivalence between two suitable subcategories of the module categories of two given right noetherian rings to get a singular equivalence between the rings. In different types of rings, including path rings, triangular matrix rings, trivial extension rings and tensor rings, we provide some consequences for their singularity categories.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-021-00289-1","citationCount":"0","resultStr":"{\"title\":\"Relative singularity categories and singular equivalences\",\"authors\":\"Rasool Hafezi\",\"doi\":\"10.1007/s40062-021-00289-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>R</i> be a right noetherian ring. We introduce the concept of relative singularity category <span>\\\\(\\\\Delta _{\\\\mathcal {X} }(R)\\\\)</span> of <i>R</i> with respect to a contravariantly finite subcategory <span>\\\\(\\\\mathcal {X} \\\\)</span> of <span>\\\\({\\\\text {{mod{-}}}}R.\\\\)</span> Along with some finiteness conditions on <span>\\\\(\\\\mathcal {X} \\\\)</span>, we prove that <span>\\\\(\\\\Delta _{\\\\mathcal {X} }(R)\\\\)</span> is triangle equivalent to a subcategory of the homotopy category <span>\\\\(\\\\mathbb {K} _\\\\mathrm{{ac}}(\\\\mathcal {X} )\\\\)</span> of exact complexes over <span>\\\\(\\\\mathcal {X} \\\\)</span>. As an application, a new description of the classical singularity category <span>\\\\(\\\\mathbb {D} _\\\\mathrm{{sg}}(R)\\\\)</span> is given. The relative singularity categories are applied to lift a stable equivalence between two suitable subcategories of the module categories of two given right noetherian rings to get a singular equivalence between the rings. In different types of rings, including path rings, triangular matrix rings, trivial extension rings and tensor rings, we provide some consequences for their singularity categories.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-021-00289-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-021-00289-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-021-00289-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设R是一个右诺瑟环。在\({\text {{mod{-}}}}R.\)的逆变有限子范畴\(\mathcal {X} \)上引入了R的相对奇异范畴\(\Delta _{\mathcal {X} }(R)\)的概念,并在\(\mathcal {X} \)上给出了若干有限条件,证明了\(\Delta _{\mathcal {X} }(R)\)与\(\mathcal {X} \)上精确复形的同伦范畴\(\mathbb {K} _\mathrm{{ac}}(\mathcal {X} )\)的一个子范畴是三角形等价的。作为应用,给出了经典奇异类\(\mathbb {D} _\mathrm{{sg}}(R)\)的一种新的描述。利用相对奇异范畴提升了两个给定右诺瑟环模范畴的两个合适子范畴之间的稳定等价,得到了环间的奇异等价。对于不同类型的环,包括路径环、三角矩阵环、平凡扩展环和张量环,我们给出了它们奇异范畴的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Relative singularity categories and singular equivalences

Let R be a right noetherian ring. We introduce the concept of relative singularity category \(\Delta _{\mathcal {X} }(R)\) of R with respect to a contravariantly finite subcategory \(\mathcal {X} \) of \({\text {{mod{-}}}}R.\) Along with some finiteness conditions on \(\mathcal {X} \), we prove that \(\Delta _{\mathcal {X} }(R)\) is triangle equivalent to a subcategory of the homotopy category \(\mathbb {K} _\mathrm{{ac}}(\mathcal {X} )\) of exact complexes over \(\mathcal {X} \). As an application, a new description of the classical singularity category \(\mathbb {D} _\mathrm{{sg}}(R)\) is given. The relative singularity categories are applied to lift a stable equivalence between two suitable subcategories of the module categories of two given right noetherian rings to get a singular equivalence between the rings. In different types of rings, including path rings, triangular matrix rings, trivial extension rings and tensor rings, we provide some consequences for their singularity categories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信