分析有系统偏差的数据

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
M. Zampetakis
{"title":"分析有系统偏差的数据","authors":"M. Zampetakis","doi":"10.1145/3572885.3572890","DOIUrl":null,"url":null,"abstract":"In many data analysis problems, we only have access to biased data due to some systematic bias of the data collection procedure. In this letter, we present a general formulation of systematic bias in data as well as our recent results on how to handle two very fundamental types of systematic bias that arise frequently in econometric studies: truncation bias and self-selection bias.","PeriodicalId":56237,"journal":{"name":"ACM SIGecom Exchanges","volume":"20 1","pages":"55 - 63"},"PeriodicalIF":0.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing data with systematic bias\",\"authors\":\"M. Zampetakis\",\"doi\":\"10.1145/3572885.3572890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many data analysis problems, we only have access to biased data due to some systematic bias of the data collection procedure. In this letter, we present a general formulation of systematic bias in data as well as our recent results on how to handle two very fundamental types of systematic bias that arise frequently in econometric studies: truncation bias and self-selection bias.\",\"PeriodicalId\":56237,\"journal\":{\"name\":\"ACM SIGecom Exchanges\",\"volume\":\"20 1\",\"pages\":\"55 - 63\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGecom Exchanges\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3572885.3572890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGecom Exchanges","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572885.3572890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在许多数据分析问题中,由于数据收集过程中的一些系统性偏差,我们只能接触到有偏差的数据。在这封信中,我们提出了数据中系统偏差的一般公式,以及我们最近关于如何处理计量经济学研究中经常出现的两种非常基本的系统偏差类型的结果:截断偏差和自我选择偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing data with systematic bias
In many data analysis problems, we only have access to biased data due to some systematic bias of the data collection procedure. In this letter, we present a general formulation of systematic bias in data as well as our recent results on how to handle two very fundamental types of systematic bias that arise frequently in econometric studies: truncation bias and self-selection bias.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM SIGecom Exchanges
ACM SIGecom Exchanges COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信