高斯整数和爱森斯坦整数\(K_4\)的拓扑计算

Pub Date : 2018-08-18 DOI:10.1007/s40062-018-0212-8
Mathieu Dutour Sikirić, Herbert Gangl, Paul E. Gunnells, Jonathan Hanke, Achill Schürmann, Dan Yasaki
{"title":"高斯整数和爱森斯坦整数\\(K_4\\)的拓扑计算","authors":"Mathieu Dutour Sikirić,&nbsp;Herbert Gangl,&nbsp;Paul E. Gunnells,&nbsp;Jonathan Hanke,&nbsp;Achill Schürmann,&nbsp;Dan Yasaki","doi":"10.1007/s40062-018-0212-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper we use topological tools to investigate the structure of the algebraic <i>K</i>-groups <span>\\(K_4(R)\\)</span> for <span>\\(R=Z[i]\\)</span> and <span>\\(R=Z[\\rho ]\\)</span> where <span>\\(i := \\sqrt{-1}\\)</span> and <span>\\(\\rho := (1+\\sqrt{-3})/2\\)</span>. We exploit the close connection between homology groups of <span>\\(\\mathrm {GL}_n(R)\\)</span> for <span>\\(n\\le 5\\)</span> and those of related classifying spaces, then compute the former using Voronoi’s reduction theory of positive definite quadratic and Hermitian forms to produce a very large finite cell complex on which <span>\\(\\mathrm {GL}_n(R)\\)</span> acts. Our main result is that <span>\\(K_{4} ({\\mathbb {Z}}[i])\\)</span> and <span>\\(K_{4} ({\\mathbb {Z}}[\\rho ])\\)</span> have no <i>p</i>-torsion for <span>\\(p\\ge 5\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0212-8","citationCount":"2","resultStr":"{\"title\":\"On the topological computation of \\\\(K_4\\\\) of the Gaussian and Eisenstein integers\",\"authors\":\"Mathieu Dutour Sikirić,&nbsp;Herbert Gangl,&nbsp;Paul E. Gunnells,&nbsp;Jonathan Hanke,&nbsp;Achill Schürmann,&nbsp;Dan Yasaki\",\"doi\":\"10.1007/s40062-018-0212-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we use topological tools to investigate the structure of the algebraic <i>K</i>-groups <span>\\\\(K_4(R)\\\\)</span> for <span>\\\\(R=Z[i]\\\\)</span> and <span>\\\\(R=Z[\\\\rho ]\\\\)</span> where <span>\\\\(i := \\\\sqrt{-1}\\\\)</span> and <span>\\\\(\\\\rho := (1+\\\\sqrt{-3})/2\\\\)</span>. We exploit the close connection between homology groups of <span>\\\\(\\\\mathrm {GL}_n(R)\\\\)</span> for <span>\\\\(n\\\\le 5\\\\)</span> and those of related classifying spaces, then compute the former using Voronoi’s reduction theory of positive definite quadratic and Hermitian forms to produce a very large finite cell complex on which <span>\\\\(\\\\mathrm {GL}_n(R)\\\\)</span> acts. Our main result is that <span>\\\\(K_{4} ({\\\\mathbb {Z}}[i])\\\\)</span> and <span>\\\\(K_{4} ({\\\\mathbb {Z}}[\\\\rho ])\\\\)</span> have no <i>p</i>-torsion for <span>\\\\(p\\\\ge 5\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-018-0212-8\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-018-0212-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0212-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们使用拓扑工具研究了\(R=Z[i]\)和\(R=Z[\rho ]\)的代数k群\(K_4(R)\)的结构,其中\(i := \sqrt{-1}\)和\(\rho := (1+\sqrt{-3})/2\)。利用\(n\le 5\)的\(\mathrm {GL}_n(R)\)同调群与相关分类空间的同调群之间的紧密联系,利用Voronoi的正定二次型约简理论和厄米形式计算前者,得到\(\mathrm {GL}_n(R)\)作用于的一个非常大的有限胞复合体。我们的主要结果是\(K_{4} ({\mathbb {Z}}[i])\)和\(K_{4} ({\mathbb {Z}}[\rho ])\)对于\(p\ge 5\)没有p-扭转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the topological computation of \(K_4\) of the Gaussian and Eisenstein integers

In this paper we use topological tools to investigate the structure of the algebraic K-groups \(K_4(R)\) for \(R=Z[i]\) and \(R=Z[\rho ]\) where \(i := \sqrt{-1}\) and \(\rho := (1+\sqrt{-3})/2\). We exploit the close connection between homology groups of \(\mathrm {GL}_n(R)\) for \(n\le 5\) and those of related classifying spaces, then compute the former using Voronoi’s reduction theory of positive definite quadratic and Hermitian forms to produce a very large finite cell complex on which \(\mathrm {GL}_n(R)\) acts. Our main result is that \(K_{4} ({\mathbb {Z}}[i])\) and \(K_{4} ({\mathbb {Z}}[\rho ])\) have no p-torsion for \(p\ge 5\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信