两种竞争模型中快速回驱引起的混沌

T. Azizi, Bacim Alali
{"title":"两种竞争模型中快速回驱引起的混沌","authors":"T. Azizi, Bacim Alali","doi":"10.4236/ajcm.2020.102017","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the complex dynamics of two-species Ricker-type discrete-time competitive model. We perform a local stability analysis for the fixed points and we will discuss about its persistence for boundary fixed points. This system inherits the dynamics of one-dimensional Ricker model such as cascade of period-doubling bifurcation, periodic windows and chaos. We explore the existence of chaos for the equilibrium points for a specific case of this system using Marotto theorem and proving the existence of snap-back repeller. We use several dynamical systems tools to demonstrate the qualitative behaviors of the system.","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chaos Induced by Snap-Back Repeller in a Two Species Competitive Model\",\"authors\":\"T. Azizi, Bacim Alali\",\"doi\":\"10.4236/ajcm.2020.102017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the complex dynamics of two-species Ricker-type discrete-time competitive model. We perform a local stability analysis for the fixed points and we will discuss about its persistence for boundary fixed points. This system inherits the dynamics of one-dimensional Ricker model such as cascade of period-doubling bifurcation, periodic windows and chaos. We explore the existence of chaos for the equilibrium points for a specific case of this system using Marotto theorem and proving the existence of snap-back repeller. We use several dynamical systems tools to demonstrate the qualitative behaviors of the system.\",\"PeriodicalId\":64456,\"journal\":{\"name\":\"美国计算数学期刊(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"美国计算数学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ajcm.2020.102017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"美国计算数学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ajcm.2020.102017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了两种ricker型离散竞争模型的复杂动力学问题。我们对不动点进行了局部稳定性分析,并讨论了它对边界不动点的持续性。该系统继承了倍周期分岔级联、周期窗口和混沌等一维Ricker模型的动力学特性。利用马罗托定理,探讨了该系统的平衡点混沌的存在性,并证明了弹回阻力的存在性。我们使用几个动力系统工具来演示系统的定性行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaos Induced by Snap-Back Repeller in a Two Species Competitive Model
In this paper, we investigate the complex dynamics of two-species Ricker-type discrete-time competitive model. We perform a local stability analysis for the fixed points and we will discuss about its persistence for boundary fixed points. This system inherits the dynamics of one-dimensional Ricker model such as cascade of period-doubling bifurcation, periodic windows and chaos. We explore the existence of chaos for the equilibrium points for a specific case of this system using Marotto theorem and proving the existence of snap-back repeller. We use several dynamical systems tools to demonstrate the qualitative behaviors of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
348
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信