ZHANG Kun , YAO Qi-jun , LIU Dong , YAO Ming , LI Jing , ZHANG Wen , LIU Yan-jie , QUAN Jia , SHI Sheng-cai
{"title":"高灵敏度太赫兹检测模块低温恒温器力学和热性能的设计与研究","authors":"ZHANG Kun , YAO Qi-jun , LIU Dong , YAO Ming , LI Jing , ZHANG Wen , LIU Yan-jie , QUAN Jia , SHI Sheng-cai","doi":"10.1016/j.chinastron.2023.06.008","DOIUrl":null,"url":null,"abstract":"<div><p><span>The High Sensitivity Terahertz Detection Module (HSTDM) is one of the scientific payloads of the China Space Station Survey Telescope, which mainly conducts terahertz astronomical observations. The core of the HSTDM is the NbN superconducting tunnel junction (Superconductor - Insulator - Superconductor (SIS)) mixer, operating at the temperature </span><span><math><mo>≤</mo></math></span><span><span><span> 10 K, cooled by a space-qualified two-stage pulse tube refrigerator. The cryostat, which can minimize the heat load of the refrigerator, is a key component to realize the 10 K refrigeration environment in space, and it needs to adapt to the </span>mechanical vibration during launch. This paper mainly introduces the structural design, mechanical characteristics simulation analysis and actual measurement, and thermal characteristics simulation analysis of this special cryostat. The fundamental frequency of the cryostat is 189.36 Hz. The mechanical analysis results demonstrate that the maximum stress of the support structures is lower than the yield stress of the materials. The </span>vibration test results show that the cryostat can adapt to mechanical environments. The cryostat has a heat leakage of 1800 mW to the first cold stage and 20.6 mW to the second cold stage, both of which are less than the cooling power of the refrigerator. The thermal analysis results show that the thermal design of the cryostat satisfies the thermal insulation requirements. The research results demonstrate that the cryostat design can meet the space application requirements of the HSTDM.</span></p></div>","PeriodicalId":35730,"journal":{"name":"Chinese Astronomy and Astrophysics","volume":"47 2","pages":"Pages 410-423"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Study on Mechanical and Thermal Properties of the Cryostat for High Sensitivity Terahertz Detection Module\",\"authors\":\"ZHANG Kun , YAO Qi-jun , LIU Dong , YAO Ming , LI Jing , ZHANG Wen , LIU Yan-jie , QUAN Jia , SHI Sheng-cai\",\"doi\":\"10.1016/j.chinastron.2023.06.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The High Sensitivity Terahertz Detection Module (HSTDM) is one of the scientific payloads of the China Space Station Survey Telescope, which mainly conducts terahertz astronomical observations. The core of the HSTDM is the NbN superconducting tunnel junction (Superconductor - Insulator - Superconductor (SIS)) mixer, operating at the temperature </span><span><math><mo>≤</mo></math></span><span><span><span> 10 K, cooled by a space-qualified two-stage pulse tube refrigerator. The cryostat, which can minimize the heat load of the refrigerator, is a key component to realize the 10 K refrigeration environment in space, and it needs to adapt to the </span>mechanical vibration during launch. This paper mainly introduces the structural design, mechanical characteristics simulation analysis and actual measurement, and thermal characteristics simulation analysis of this special cryostat. The fundamental frequency of the cryostat is 189.36 Hz. The mechanical analysis results demonstrate that the maximum stress of the support structures is lower than the yield stress of the materials. The </span>vibration test results show that the cryostat can adapt to mechanical environments. The cryostat has a heat leakage of 1800 mW to the first cold stage and 20.6 mW to the second cold stage, both of which are less than the cooling power of the refrigerator. The thermal analysis results show that the thermal design of the cryostat satisfies the thermal insulation requirements. The research results demonstrate that the cryostat design can meet the space application requirements of the HSTDM.</span></p></div>\",\"PeriodicalId\":35730,\"journal\":{\"name\":\"Chinese Astronomy and Astrophysics\",\"volume\":\"47 2\",\"pages\":\"Pages 410-423\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Astronomy and Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0275106223000358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0275106223000358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Design and Study on Mechanical and Thermal Properties of the Cryostat for High Sensitivity Terahertz Detection Module
The High Sensitivity Terahertz Detection Module (HSTDM) is one of the scientific payloads of the China Space Station Survey Telescope, which mainly conducts terahertz astronomical observations. The core of the HSTDM is the NbN superconducting tunnel junction (Superconductor - Insulator - Superconductor (SIS)) mixer, operating at the temperature 10 K, cooled by a space-qualified two-stage pulse tube refrigerator. The cryostat, which can minimize the heat load of the refrigerator, is a key component to realize the 10 K refrigeration environment in space, and it needs to adapt to the mechanical vibration during launch. This paper mainly introduces the structural design, mechanical characteristics simulation analysis and actual measurement, and thermal characteristics simulation analysis of this special cryostat. The fundamental frequency of the cryostat is 189.36 Hz. The mechanical analysis results demonstrate that the maximum stress of the support structures is lower than the yield stress of the materials. The vibration test results show that the cryostat can adapt to mechanical environments. The cryostat has a heat leakage of 1800 mW to the first cold stage and 20.6 mW to the second cold stage, both of which are less than the cooling power of the refrigerator. The thermal analysis results show that the thermal design of the cryostat satisfies the thermal insulation requirements. The research results demonstrate that the cryostat design can meet the space application requirements of the HSTDM.
期刊介绍:
The vigorous growth of astronomical and astrophysical science in China led to an increase in papers on astrophysics which Acta Astronomica Sinica could no longer absorb. Translations of papers from two new journals the Chinese Journal of Space Science and Acta Astrophysica Sinica are added to the translation of Acta Astronomica Sinica to form the new journal Chinese Astronomy and Astrophysics. Chinese Astronomy and Astrophysics brings English translations of notable articles to astronomers and astrophysicists outside China.