历史相关随机线性递归的分布尾

Pub Date : 2022-01-11 DOI:10.1080/15326349.2021.2003712
A. Roitershtein, Zirou Zhou
{"title":"历史相关随机线性递归的分布尾","authors":"A. Roitershtein, Zirou Zhou","doi":"10.1080/15326349.2021.2003712","DOIUrl":null,"url":null,"abstract":"Abstract We consider a history-dependent random linear recursion, adapting a continuous-time framework introduced by Clifford and Stirzaker. Typically, the main object of interest in the study of history-dependent processes is the evolution and asymptotic behavior of their first and second moments. We apply the methodology developed by Clifford and Stirzaker to study the evolution of distribution tails of the process by utilizing a certain affinity between the asymptotic structure of the tails in a regular variation regime and a linear structure of moments in the class of models introduced by Clifford and Stirzaker.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distribution tails of a history-dependent random linear recursion\",\"authors\":\"A. Roitershtein, Zirou Zhou\",\"doi\":\"10.1080/15326349.2021.2003712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider a history-dependent random linear recursion, adapting a continuous-time framework introduced by Clifford and Stirzaker. Typically, the main object of interest in the study of history-dependent processes is the evolution and asymptotic behavior of their first and second moments. We apply the methodology developed by Clifford and Stirzaker to study the evolution of distribution tails of the process by utilizing a certain affinity between the asymptotic structure of the tails in a regular variation regime and a linear structure of moments in the class of models introduced by Clifford and Stirzaker.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/15326349.2021.2003712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2021.2003712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用Clifford和Stirzaker提出的连续时间框架,考虑一个历史相关的随机线性递归。通常,研究历史依赖过程的主要兴趣对象是其第一和第二时刻的演化和渐近行为。我们采用Clifford和Stirzaker开发的方法,利用正则变分状态下的尾的渐近结构与Clifford和Stirzaker引入的一类模型中矩的线性结构之间的某种亲缘关系,来研究过程的分布尾的演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Distribution tails of a history-dependent random linear recursion
Abstract We consider a history-dependent random linear recursion, adapting a continuous-time framework introduced by Clifford and Stirzaker. Typically, the main object of interest in the study of history-dependent processes is the evolution and asymptotic behavior of their first and second moments. We apply the methodology developed by Clifford and Stirzaker to study the evolution of distribution tails of the process by utilizing a certain affinity between the asymptotic structure of the tails in a regular variation regime and a linear structure of moments in the class of models introduced by Clifford and Stirzaker.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信