{"title":"一个新的包含欧拉数的伯努利数显式公式","authors":"S. Jha","doi":"10.31219/osf.io/zkwjc","DOIUrl":null,"url":null,"abstract":"In this brief note, we derive a new explicit formula for Bernoulli numbers in terms of the Stirling numbers of the second kind and the Euler numbers. As a corollary of our result, we obtain an explicit formula for the Euler numbers in terms of the Stirling numbers of the second kind.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A new explicit formula for Bernoulli numbers involving the Euler number\",\"authors\":\"S. Jha\",\"doi\":\"10.31219/osf.io/zkwjc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this brief note, we derive a new explicit formula for Bernoulli numbers in terms of the Stirling numbers of the second kind and the Euler numbers. As a corollary of our result, we obtain an explicit formula for the Euler numbers in terms of the Stirling numbers of the second kind.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31219/osf.io/zkwjc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31219/osf.io/zkwjc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
A new explicit formula for Bernoulli numbers involving the Euler number
In this brief note, we derive a new explicit formula for Bernoulli numbers in terms of the Stirling numbers of the second kind and the Euler numbers. As a corollary of our result, we obtain an explicit formula for the Euler numbers in terms of the Stirling numbers of the second kind.