Juliet Macharia, C. Joshi, Joseph A. Izzo, Victor Wambua, Sungjin Kim, Jennifer S. Hirschi, Mathew J. Vetticatt
{"title":"Suzuki—Miyaura反应的催化机理","authors":"Juliet Macharia, C. Joshi, Joseph A. Izzo, Victor Wambua, Sungjin Kim, Jennifer S. Hirschi, Mathew J. Vetticatt","doi":"10.33774/chemrxiv-2021-64461","DOIUrl":null,"url":null,"abstract":"Abstract: Experimental and theoretical 13C kinetic isotope effects are utilized to obtain atomistic insight into the catalytic mechanism of the Pd(PPh3)4 catalyzed Suzuki-Miyaura reaction of aryl halides and aryl boronic acids. Under catalytic conditions, we establish that oxidative addition of aryl bromides occurs to a 12-electron monoligated palladium complex (Pd(PPh3)). For aryl iodides, the first irreversible step in the catalytic cycle precedes oxidative addition and is shown to be binding of the iodoarene to Pd(PPh3). Our results suggest that the commonly proposed oxidative addition to the 14-electron Pd(PPh3)2 complex can occur only in the presence of excess added ligand or under stoichiometric conditions. The transmetalation step, under catalytic conditions, is shown to proceed via a tetracoordinate boronate (8B4) intermediate with a Pd-O-B linkage.","PeriodicalId":72565,"journal":{"name":"ChemRxiv : the preprint server for chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The catalytic mechanism of the Suzuki-Miyaura reaction\",\"authors\":\"Juliet Macharia, C. Joshi, Joseph A. Izzo, Victor Wambua, Sungjin Kim, Jennifer S. Hirschi, Mathew J. Vetticatt\",\"doi\":\"10.33774/chemrxiv-2021-64461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: Experimental and theoretical 13C kinetic isotope effects are utilized to obtain atomistic insight into the catalytic mechanism of the Pd(PPh3)4 catalyzed Suzuki-Miyaura reaction of aryl halides and aryl boronic acids. Under catalytic conditions, we establish that oxidative addition of aryl bromides occurs to a 12-electron monoligated palladium complex (Pd(PPh3)). For aryl iodides, the first irreversible step in the catalytic cycle precedes oxidative addition and is shown to be binding of the iodoarene to Pd(PPh3). Our results suggest that the commonly proposed oxidative addition to the 14-electron Pd(PPh3)2 complex can occur only in the presence of excess added ligand or under stoichiometric conditions. The transmetalation step, under catalytic conditions, is shown to proceed via a tetracoordinate boronate (8B4) intermediate with a Pd-O-B linkage.\",\"PeriodicalId\":72565,\"journal\":{\"name\":\"ChemRxiv : the preprint server for chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv : the preprint server for chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33774/chemrxiv-2021-64461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv : the preprint server for chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/chemrxiv-2021-64461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The catalytic mechanism of the Suzuki-Miyaura reaction
Abstract: Experimental and theoretical 13C kinetic isotope effects are utilized to obtain atomistic insight into the catalytic mechanism of the Pd(PPh3)4 catalyzed Suzuki-Miyaura reaction of aryl halides and aryl boronic acids. Under catalytic conditions, we establish that oxidative addition of aryl bromides occurs to a 12-electron monoligated palladium complex (Pd(PPh3)). For aryl iodides, the first irreversible step in the catalytic cycle precedes oxidative addition and is shown to be binding of the iodoarene to Pd(PPh3). Our results suggest that the commonly proposed oxidative addition to the 14-electron Pd(PPh3)2 complex can occur only in the presence of excess added ligand or under stoichiometric conditions. The transmetalation step, under catalytic conditions, is shown to proceed via a tetracoordinate boronate (8B4) intermediate with a Pd-O-B linkage.