关于一类奇异非线性一阶偏微分方程

Pub Date : 2020-10-04 DOI:10.3836/tjm/1502179352
H. Tahara
{"title":"关于一类奇异非线性一阶偏微分方程","authors":"H. Tahara","doi":"10.3836/tjm/1502179352","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a class of singular nonlinear first order partial differential equations $t(\\partial u/\\partial t)=F(t,x,u, \\partial u/\\partial x)$ with $(t,x) \\in \\mathbb{R} \\times \\mathbb{C}$ under the assumption that $F(t,x,z_1,z_2)$ is a function which is continuous in $t$ and holomorphic in the other variables. Under suitable conditions, we determine all the solutions of this equation in a neighborhood of the origin.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Class of Singular Nonlinear First Order Partial Differential Equations\",\"authors\":\"H. Tahara\",\"doi\":\"10.3836/tjm/1502179352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a class of singular nonlinear first order partial differential equations $t(\\\\partial u/\\\\partial t)=F(t,x,u, \\\\partial u/\\\\partial x)$ with $(t,x) \\\\in \\\\mathbb{R} \\\\times \\\\mathbb{C}$ under the assumption that $F(t,x,z_1,z_2)$ is a function which is continuous in $t$ and holomorphic in the other variables. Under suitable conditions, we determine all the solutions of this equation in a neighborhood of the origin.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3836/tjm/1502179352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/tjm/1502179352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑一类奇异非线性一阶偏微分方程$t(\partial u/\partial t)=F(t,x,u,\partial u/\partial x)$,其中$(t,x)\In\mathbb{R}\times\mathb{C}$,假设$F(t、x,z_1,z_2)$是一个在$t$中连续且在其他变量中全纯的函数。在适当的条件下,我们确定了该方程在原点邻域内的所有解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On a Class of Singular Nonlinear First Order Partial Differential Equations
In this paper, we consider a class of singular nonlinear first order partial differential equations $t(\partial u/\partial t)=F(t,x,u, \partial u/\partial x)$ with $(t,x) \in \mathbb{R} \times \mathbb{C}$ under the assumption that $F(t,x,z_1,z_2)$ is a function which is continuous in $t$ and holomorphic in the other variables. Under suitable conditions, we determine all the solutions of this equation in a neighborhood of the origin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信