K. Kachiashvili, J. K. Kachiashvili, I. Prangishvili
{"title":"CBM用于序列实验中具有方向选择的多个假设的检验","authors":"K. Kachiashvili, J. K. Kachiashvili, I. Prangishvili","doi":"10.1080/07474946.2020.1727166","DOIUrl":null,"url":null,"abstract":"Abstract Constrained Bayesian methods (CBMs) and the concept of false discovery rates (FDRs) for testing directional hypotheses are considered in this article. It is shown that the direct application of CBM allows us to control FDR on the desired level for both one set of directional hypotheses and a multiple case when we consider () sets of directional hypotheses. When guaranteeing restriction on the desired level, a Bayesian sequential method can be applied, the stopping rules of which are proper and the sequential scheme for making a decision strongly controls the mixed directional FDR. Computational results of concrete examples confirm the correctness of the theoretical outcomes.","PeriodicalId":48879,"journal":{"name":"Sequential Analysis-Design Methods and Applications","volume":"39 1","pages":"115 - 131"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07474946.2020.1727166","citationCount":"2","resultStr":"{\"title\":\"CBM for testing multiple hypotheses with directional alternatives in sequential experiments\",\"authors\":\"K. Kachiashvili, J. K. Kachiashvili, I. Prangishvili\",\"doi\":\"10.1080/07474946.2020.1727166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Constrained Bayesian methods (CBMs) and the concept of false discovery rates (FDRs) for testing directional hypotheses are considered in this article. It is shown that the direct application of CBM allows us to control FDR on the desired level for both one set of directional hypotheses and a multiple case when we consider () sets of directional hypotheses. When guaranteeing restriction on the desired level, a Bayesian sequential method can be applied, the stopping rules of which are proper and the sequential scheme for making a decision strongly controls the mixed directional FDR. Computational results of concrete examples confirm the correctness of the theoretical outcomes.\",\"PeriodicalId\":48879,\"journal\":{\"name\":\"Sequential Analysis-Design Methods and Applications\",\"volume\":\"39 1\",\"pages\":\"115 - 131\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07474946.2020.1727166\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sequential Analysis-Design Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07474946.2020.1727166\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis-Design Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2020.1727166","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
CBM for testing multiple hypotheses with directional alternatives in sequential experiments
Abstract Constrained Bayesian methods (CBMs) and the concept of false discovery rates (FDRs) for testing directional hypotheses are considered in this article. It is shown that the direct application of CBM allows us to control FDR on the desired level for both one set of directional hypotheses and a multiple case when we consider () sets of directional hypotheses. When guaranteeing restriction on the desired level, a Bayesian sequential method can be applied, the stopping rules of which are proper and the sequential scheme for making a decision strongly controls the mixed directional FDR. Computational results of concrete examples confirm the correctness of the theoretical outcomes.
期刊介绍:
The purpose of Sequential Analysis is to contribute to theoretical and applied aspects of sequential methodologies in all areas of statistical science. Published papers highlight the development of new and important sequential approaches.
Interdisciplinary articles that emphasize the methodology of practical value to applied researchers and statistical consultants are highly encouraged. Papers that cover contemporary areas of applications including animal abundance, bioequivalence, communication science, computer simulations, data mining, directional data, disease mapping, environmental sampling, genome, imaging, microarrays, networking, parallel processing, pest management, sonar detection, spatial statistics, tracking, and engineering are deemed especially important. Of particular value are expository review articles that critically synthesize broad-based statistical issues. Papers on case-studies are also considered. All papers are refereed.