Alexandra Khitun, Sarah A. Slavoff
{"title":"翻译小开放阅读框的蛋白质组学检测与验证","authors":"Alexandra Khitun, Sarah A. Slavoff","doi":"10.1002/cpch.77","DOIUrl":null,"url":null,"abstract":"<p>Small open reading frames (smORFs) encode previously unannotated polypeptides or short proteins that regulate translation in <i>cis</i> (eukaryotes) and/or are independently functional (prokaryotes and eukaryotes). Ongoing efforts for complete annotation and functional characterization of smORF-encoded proteins have yielded novel regulators and therapeutic targets. However, because they are excluded from protein databases, initiate at non-AUG start codons, and produce few unique tryptic peptides, unannotated small proteins cannot be detected with standard proteomic methods. Here,, we outline a procedure for mass spectrometry-based detection of translated smORFs in cultured human cells from protein extraction, digestion, and LC-MS/MS, to database preparation and data analysis. Following proteomic detection, translation from a unique smORF may be validated via siRNA-based silencing or overexpression and epitope tagging. This is necessary to unambiguously assign a peptide to a smORF within a specific transcript isoform or genomic locus. Provided that sufficient starting material is available, this workflow can be applied to any cell type/organism and adjusted to study specific (patho)physiological contexts including, but not limited to, development, stress, and disease. © 2019 by John Wiley & Sons, Inc.</p><p><b>Basic Protocol 1</b>: Protein extraction, size selection, and trypsin digestion</p><p><b>Alternate Protocol 1</b>: In-solution C8 column size selection</p><p><b>Support Protocol 1</b>: Chloroform/methanol precipitation</p><p><b>Support Protocol 2</b>: Reduction, alkylation, and in-solution protease digestion</p><p><b>Support Protocol 3</b>: Peptide de-salting</p><p><b>Basic Protocol 2</b>: Two-dimensional LC-MS/MS with ERLIC fractionation</p><p><b>Basic Protocol 3</b>: Transcriptomic database construction</p><p><b>Alternate Protocol 2</b>: Transcriptomics database generation with gffread</p><p><b>Basic Protocol 4</b>: Non-annotated peptide identification from LC-MS/MS data</p><p><b>Basic Protocol 5</b>: Validation using isotopically labeled synthetic peptide standards and siRNA</p><p><b>Basic Protocol 6</b>: Transcript validation using transient overexpression</p>","PeriodicalId":38051,"journal":{"name":"Current protocols in chemical biology","volume":"11 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpch.77","citationCount":"19","resultStr":"{\"title\":\"Proteomic Detection and Validation of Translated Small Open Reading Frames\",\"authors\":\"Alexandra Khitun, Sarah A. Slavoff\",\"doi\":\"10.1002/cpch.77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Small open reading frames (smORFs) encode previously unannotated polypeptides or short proteins that regulate translation in <i>cis</i> (eukaryotes) and/or are independently functional (prokaryotes and eukaryotes). Ongoing efforts for complete annotation and functional characterization of smORF-encoded proteins have yielded novel regulators and therapeutic targets. However, because they are excluded from protein databases, initiate at non-AUG start codons, and produce few unique tryptic peptides, unannotated small proteins cannot be detected with standard proteomic methods. Here,, we outline a procedure for mass spectrometry-based detection of translated smORFs in cultured human cells from protein extraction, digestion, and LC-MS/MS, to database preparation and data analysis. Following proteomic detection, translation from a unique smORF may be validated via siRNA-based silencing or overexpression and epitope tagging. This is necessary to unambiguously assign a peptide to a smORF within a specific transcript isoform or genomic locus. Provided that sufficient starting material is available, this workflow can be applied to any cell type/organism and adjusted to study specific (patho)physiological contexts including, but not limited to, development, stress, and disease. © 2019 by John Wiley & Sons, Inc.</p><p><b>Basic Protocol 1</b>: Protein extraction, size selection, and trypsin digestion</p><p><b>Alternate Protocol 1</b>: In-solution C8 column size selection</p><p><b>Support Protocol 1</b>: Chloroform/methanol precipitation</p><p><b>Support Protocol 2</b>: Reduction, alkylation, and in-solution protease digestion</p><p><b>Support Protocol 3</b>: Peptide de-salting</p><p><b>Basic Protocol 2</b>: Two-dimensional LC-MS/MS with ERLIC fractionation</p><p><b>Basic Protocol 3</b>: Transcriptomic database construction</p><p><b>Alternate Protocol 2</b>: Transcriptomics database generation with gffread</p><p><b>Basic Protocol 4</b>: Non-annotated peptide identification from LC-MS/MS data</p><p><b>Basic Protocol 5</b>: Validation using isotopically labeled synthetic peptide standards and siRNA</p><p><b>Basic Protocol 6</b>: Transcript validation using transient overexpression</p>\",\"PeriodicalId\":38051,\"journal\":{\"name\":\"Current protocols in chemical biology\",\"volume\":\"11 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpch.77\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in chemical biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpch.77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in chemical biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpch.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 19
Proteomic Detection and Validation of Translated Small Open Reading Frames
Small open reading frames (smORFs) encode previously unannotated polypeptides or short proteins that regulate translation in cis (eukaryotes) and/or are independently functional (prokaryotes and eukaryotes). Ongoing efforts for complete annotation and functional characterization of smORF-encoded proteins have yielded novel regulators and therapeutic targets. However, because they are excluded from protein databases, initiate at non-AUG start codons, and produce few unique tryptic peptides, unannotated small proteins cannot be detected with standard proteomic methods. Here,, we outline a procedure for mass spectrometry-based detection of translated smORFs in cultured human cells from protein extraction, digestion, and LC-MS/MS, to database preparation and data analysis. Following proteomic detection, translation from a unique smORF may be validated via siRNA-based silencing or overexpression and epitope tagging. This is necessary to unambiguously assign a peptide to a smORF within a specific transcript isoform or genomic locus. Provided that sufficient starting material is available, this workflow can be applied to any cell type/organism and adjusted to study specific (patho)physiological contexts including, but not limited to, development, stress, and disease. © 2019 by John Wiley & Sons, Inc.
Basic Protocol 1: Protein extraction, size selection, and trypsin digestion
Alternate Protocol 1: In-solution C8 column size selection
Support Protocol 1: Chloroform/methanol precipitation
Support Protocol 2: Reduction, alkylation, and in-solution protease digestion
Support Protocol 3: Peptide de-salting
Basic Protocol 2: Two-dimensional LC-MS/MS with ERLIC fractionation
Basic Protocol 3: Transcriptomic database construction
Alternate Protocol 2: Transcriptomics database generation with gffread
Basic Protocol 4: Non-annotated peptide identification from LC-MS/MS data
Basic Protocol 5: Validation using isotopically labeled synthetic peptide standards and siRNA
Basic Protocol 6: Transcript validation using transient overexpression