Connes-Landi球面是齐次空间

Q4 Mathematics
M. Wilson
{"title":"Connes-Landi球面是齐次空间","authors":"M. Wilson","doi":"10.15446/recolma.v53nsupl.84099","DOIUrl":null,"url":null,"abstract":"In this paper, we review some recent developments of compact quantum groups that arise as θ-deformations of compact Lie groups of rank at least two. A θ-deformation is merely a 2-cocycle deformation using an action of a torus of dimension higher than 2. Using the formula (Lemma 5.3) developed in [11], we derive the noncommutative 7-sphere in the sense of Connes and Landi [3] as the fixed-point subalgebra.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15446/recolma.v53nsupl.84099","citationCount":"0","resultStr":"{\"title\":\"Connes-Landi spheres are homogeneous spaces\",\"authors\":\"M. Wilson\",\"doi\":\"10.15446/recolma.v53nsupl.84099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we review some recent developments of compact quantum groups that arise as θ-deformations of compact Lie groups of rank at least two. A θ-deformation is merely a 2-cocycle deformation using an action of a torus of dimension higher than 2. Using the formula (Lemma 5.3) developed in [11], we derive the noncommutative 7-sphere in the sense of Connes and Landi [3] as the fixed-point subalgebra.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15446/recolma.v53nsupl.84099\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v53nsupl.84099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v53nsupl.84099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了紧量子群的一些最新进展,这些紧量子群是至少秩为2的紧李群的θ-变形。θ-变形仅仅是在维数大于2的环面作用下的2周变形。利用[11]中导出的公式(引理5.3),导出了Connes和Landi[3]意义上的非交换7球作为不动点子代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connes-Landi spheres are homogeneous spaces
In this paper, we review some recent developments of compact quantum groups that arise as θ-deformations of compact Lie groups of rank at least two. A θ-deformation is merely a 2-cocycle deformation using an action of a torus of dimension higher than 2. Using the formula (Lemma 5.3) developed in [11], we derive the noncommutative 7-sphere in the sense of Connes and Landi [3] as the fixed-point subalgebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Colombiana de Matematicas
Revista Colombiana de Matematicas Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信