{"title":"Connes-Landi球面是齐次空间","authors":"M. Wilson","doi":"10.15446/recolma.v53nsupl.84099","DOIUrl":null,"url":null,"abstract":"In this paper, we review some recent developments of compact quantum groups that arise as θ-deformations of compact Lie groups of rank at least two. A θ-deformation is merely a 2-cocycle deformation using an action of a torus of dimension higher than 2. Using the formula (Lemma 5.3) developed in [11], we derive the noncommutative 7-sphere in the sense of Connes and Landi [3] as the fixed-point subalgebra.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15446/recolma.v53nsupl.84099","citationCount":"0","resultStr":"{\"title\":\"Connes-Landi spheres are homogeneous spaces\",\"authors\":\"M. Wilson\",\"doi\":\"10.15446/recolma.v53nsupl.84099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we review some recent developments of compact quantum groups that arise as θ-deformations of compact Lie groups of rank at least two. A θ-deformation is merely a 2-cocycle deformation using an action of a torus of dimension higher than 2. Using the formula (Lemma 5.3) developed in [11], we derive the noncommutative 7-sphere in the sense of Connes and Landi [3] as the fixed-point subalgebra.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15446/recolma.v53nsupl.84099\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v53nsupl.84099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v53nsupl.84099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
In this paper, we review some recent developments of compact quantum groups that arise as θ-deformations of compact Lie groups of rank at least two. A θ-deformation is merely a 2-cocycle deformation using an action of a torus of dimension higher than 2. Using the formula (Lemma 5.3) developed in [11], we derive the noncommutative 7-sphere in the sense of Connes and Landi [3] as the fixed-point subalgebra.