{"title":"基于各向同性扩散和全变分模型的PDE去噪模型","authors":"Neda Mohamadi, A. Soheili, F. Toutounian","doi":"10.22034/CMDE.2020.26116.1331","DOIUrl":null,"url":null,"abstract":"In this paper, a denoising PDE model based on a combination of the isotropic diffusion and total variation models is presented. The new weighted model is able to be adaptive in each region in accordance with the image’s information. The model performs more diffusion in the flat regions of the image, and less diffusion in the edges of the image. The new model has more ability to restore the image in terms of peak signal to noise ratio and visual quality, compared with total variation, isotropic diffusion, and some well-known models. Experimental results show that the model is able to suppress the noise effectively while preserving texture features and edge information well.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Denoising PDE Model based on Isotropic Diffusion and Total Variation Models\",\"authors\":\"Neda Mohamadi, A. Soheili, F. Toutounian\",\"doi\":\"10.22034/CMDE.2020.26116.1331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a denoising PDE model based on a combination of the isotropic diffusion and total variation models is presented. The new weighted model is able to be adaptive in each region in accordance with the image’s information. The model performs more diffusion in the flat regions of the image, and less diffusion in the edges of the image. The new model has more ability to restore the image in terms of peak signal to noise ratio and visual quality, compared with total variation, isotropic diffusion, and some well-known models. Experimental results show that the model is able to suppress the noise effectively while preserving texture features and edge information well.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.26116.1331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.26116.1331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Denoising PDE Model based on Isotropic Diffusion and Total Variation Models
In this paper, a denoising PDE model based on a combination of the isotropic diffusion and total variation models is presented. The new weighted model is able to be adaptive in each region in accordance with the image’s information. The model performs more diffusion in the flat regions of the image, and less diffusion in the edges of the image. The new model has more ability to restore the image in terms of peak signal to noise ratio and visual quality, compared with total variation, isotropic diffusion, and some well-known models. Experimental results show that the model is able to suppress the noise effectively while preserving texture features and edge information well.