高斯序列二次变分极限定理的充要条件

IF 1.3 Q2 STATISTICS & PROBABILITY
L. Viitasaari
{"title":"高斯序列二次变分极限定理的充要条件","authors":"L. Viitasaari","doi":"10.1214/15-PS267","DOIUrl":null,"url":null,"abstract":"The quadratic variation of Gaussian processes plays an important role\r\nin both stochastic analysis and in applications such as estimation of\r\nmodel parameters, and for this reason the topic has been extensively\r\nstudied in the literature. In this article we study the convergence of\r\nquadratic sums of general Gaussian sequences. We provide necessary and\r\nsufficient conditions for different types of convergence including\r\nconvergence in probability, almost sure convergence, $L^{p}$-convergence\r\nas well as weak convergence. We use a practical and simple approach\r\nwhich simplifies the existing methodology considerably. As an\r\napplication, we show how convergence of the quadratic variation of a\r\ngiven process can be obtained by an appropriate choice of the underlying\r\nsequence.\r\n<script type=\"text/javascript\"\r\nsrc=\"//cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML\">","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Necessary and sufficient conditions for limit theorems for quadratic variations of Gaussian sequences\",\"authors\":\"L. Viitasaari\",\"doi\":\"10.1214/15-PS267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quadratic variation of Gaussian processes plays an important role\\r\\nin both stochastic analysis and in applications such as estimation of\\r\\nmodel parameters, and for this reason the topic has been extensively\\r\\nstudied in the literature. In this article we study the convergence of\\r\\nquadratic sums of general Gaussian sequences. We provide necessary and\\r\\nsufficient conditions for different types of convergence including\\r\\nconvergence in probability, almost sure convergence, $L^{p}$-convergence\\r\\nas well as weak convergence. We use a practical and simple approach\\r\\nwhich simplifies the existing methodology considerably. As an\\r\\napplication, we show how convergence of the quadratic variation of a\\r\\ngiven process can be obtained by an appropriate choice of the underlying\\r\\nsequence.\\r\\n<script type=\\\"text/javascript\\\"\\r\\nsrc=\\\"//cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML\\\">\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/15-PS267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/15-PS267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 12

摘要

高斯过程的二次变分在随机分析和模型参数估计等应用中都起着重要的作用,因此,该主题在文献中得到了广泛的研究。本文研究了一般高斯序列的二次和的收敛性。给出了各种收敛类型的充分必要条件,包括概率收敛、几乎肯定收敛、$L^{p}$-收敛和弱收敛。我们采用了一种实用而简单的方法,大大简化了现有的方法。作为一个应用,我们展示了如何通过适当选择基础序列来获得给定过程的二次变分的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Necessary and sufficient conditions for limit theorems for quadratic variations of Gaussian sequences
The quadratic variation of Gaussian processes plays an important role in both stochastic analysis and in applications such as estimation of model parameters, and for this reason the topic has been extensively studied in the literature. In this article we study the convergence of quadratic sums of general Gaussian sequences. We provide necessary and sufficient conditions for different types of convergence including convergence in probability, almost sure convergence, $L^{p}$-convergence as well as weak convergence. We use a practical and simple approach which simplifies the existing methodology considerably. As an application, we show how convergence of the quadratic variation of a given process can be obtained by an appropriate choice of the underlying sequence.
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信