评论:具有内生协变量的线性混合效应模型的诊断和基于核的扩展

IF 3.9 1区 数学 Q1 STATISTICS & PROBABILITY
Hunyong Cho, Joshua P. Zitovsky, Xinyi Li, Minxin Lu, K. Shah, John Sperger, Matthew C. B. Tsilimigras, M. Kosorok
{"title":"评论:具有内生协变量的线性混合效应模型的诊断和基于核的扩展","authors":"Hunyong Cho, Joshua P. Zitovsky, Xinyi Li, Minxin Lu, K. Shah, John Sperger, Matthew C. B. Tsilimigras, M. Kosorok","doi":"10.1214/20-sts782","DOIUrl":null,"url":null,"abstract":"We discuss “Linear mixed models with endogenous covariates: modeling sequential treatment effects with application to a mobile health study” by Qian, Klasnja and Murphy. In this discussion, we study when the linear mixed effects models with endogenous covariates are feasible to use by providing examples and diagnostic tools as well as discussing potential extensions. This includes evaluating feasibility of partial likelihood-based inference, checking the conditional independence assumption, estimation of marginal effects, and kernel extensions of the model.","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":"35 1","pages":"396-399"},"PeriodicalIF":3.9000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comment: Diagnostics and Kernel-based Extensions for Linear Mixed Effects Models with Endogenous Covariates\",\"authors\":\"Hunyong Cho, Joshua P. Zitovsky, Xinyi Li, Minxin Lu, K. Shah, John Sperger, Matthew C. B. Tsilimigras, M. Kosorok\",\"doi\":\"10.1214/20-sts782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss “Linear mixed models with endogenous covariates: modeling sequential treatment effects with application to a mobile health study” by Qian, Klasnja and Murphy. In this discussion, we study when the linear mixed effects models with endogenous covariates are feasible to use by providing examples and diagnostic tools as well as discussing potential extensions. This includes evaluating feasibility of partial likelihood-based inference, checking the conditional independence assumption, estimation of marginal effects, and kernel extensions of the model.\",\"PeriodicalId\":51172,\"journal\":{\"name\":\"Statistical Science\",\"volume\":\"35 1\",\"pages\":\"396-399\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/20-sts782\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-sts782","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了钱、Klasnja和Murphy的“具有内生协变量的线性混合模型:序列治疗效果建模及其在移动健康研究中的应用”。在这场讨论中,我们通过提供例子和诊断工具以及讨论潜在的扩展,研究了具有内生协变量的线性混合效应模型何时可行。这包括评估基于偏似然推理的可行性,检查条件独立性假设,估计边际效应,以及模型的核扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comment: Diagnostics and Kernel-based Extensions for Linear Mixed Effects Models with Endogenous Covariates
We discuss “Linear mixed models with endogenous covariates: modeling sequential treatment effects with application to a mobile health study” by Qian, Klasnja and Murphy. In this discussion, we study when the linear mixed effects models with endogenous covariates are feasible to use by providing examples and diagnostic tools as well as discussing potential extensions. This includes evaluating feasibility of partial likelihood-based inference, checking the conditional independence assumption, estimation of marginal effects, and kernel extensions of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Science
Statistical Science 数学-统计学与概率论
CiteScore
6.50
自引率
1.80%
发文量
40
审稿时长
>12 weeks
期刊介绍: The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信