在𝒮'中随机偏微分方程的lsamvy噪声驱动

IF 0.3 Q4 STATISTICS & PROBABILITY
Suprio Bhar, R. Bhaskaran, Barun Sarkar
{"title":"在𝒮'中随机偏微分方程的lsamvy噪声驱动","authors":"Suprio Bhar, R. Bhaskaran, Barun Sarkar","doi":"10.1515/rose-2020-2041","DOIUrl":null,"url":null,"abstract":"Abstract In this article we show that a finite-dimensional stochastic differential equation driven by a Lévy noise can be formulated as a stochastic partial differential equation (SPDE) driven by the same Lévy noise. We prove the existence result for such an SPDE by Itô’s formula for translation operators, and the uniqueness by an adapted form of “Monotonicity inequality”, proved earlier in the diffusion case. As a consequence, the solutions that we construct have the “translation invariance” property.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"28 1","pages":"217 - 226"},"PeriodicalIF":0.3000,"publicationDate":"2020-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/rose-2020-2041","citationCount":"0","resultStr":"{\"title\":\"Stochastic PDEs in 𝒮' for SDEs driven by Lévy noise\",\"authors\":\"Suprio Bhar, R. Bhaskaran, Barun Sarkar\",\"doi\":\"10.1515/rose-2020-2041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article we show that a finite-dimensional stochastic differential equation driven by a Lévy noise can be formulated as a stochastic partial differential equation (SPDE) driven by the same Lévy noise. We prove the existence result for such an SPDE by Itô’s formula for translation operators, and the uniqueness by an adapted form of “Monotonicity inequality”, proved earlier in the diffusion case. As a consequence, the solutions that we construct have the “translation invariance” property.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"28 1\",\"pages\":\"217 - 226\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/rose-2020-2041\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2020-2041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2020-2041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了一个有限维随机微分方程可以被表示为一个随机偏微分方程(SPDE)。我们利用Itô平移算子的公式证明了这种SPDE的存在性,并利用先前在扩散情况下证明的“单调性不等式”的一种改编形式证明了它的唯一性。因此,我们构造的解具有“平移不变性”的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic PDEs in 𝒮' for SDEs driven by Lévy noise
Abstract In this article we show that a finite-dimensional stochastic differential equation driven by a Lévy noise can be formulated as a stochastic partial differential equation (SPDE) driven by the same Lévy noise. We prove the existence result for such an SPDE by Itô’s formula for translation operators, and the uniqueness by an adapted form of “Monotonicity inequality”, proved earlier in the diffusion case. As a consequence, the solutions that we construct have the “translation invariance” property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信