深度学习预测振幅死亡

Pengcheng Ji, Tingyi Yu, Yaxuan Zhang, Wei Gong, Qingyun Yu, Li Li
{"title":"深度学习预测振幅死亡","authors":"Pengcheng Ji,&nbsp;Tingyi Yu,&nbsp;Yaxuan Zhang,&nbsp;Wei Gong,&nbsp;Qingyun Yu,&nbsp;Li Li","doi":"10.1007/s43684-022-00044-0","DOIUrl":null,"url":null,"abstract":"<div><p>Affected by parameter drift and coupling organization, nonlinear dynamical systems exhibit suppressed oscillations. This phenomenon is called amplitude death. In various complex systems, amplitude death is a typical critical phenomenon, which may lead to the functional collapse of the system. Therefore, an important issue is how to effectively predict critical phenomena based on the data in the system oscillation state. This paper proposes an enhanced Informer model to predict amplitude death. The model employs an attention mechanism to capture the long-range associations of the system time series and tracks the effect of parameter drift on the system dynamics through an accompanying parameter input channel. The experimental results based on the coupled Rössler and Lorentz systems show that the enhanced informer has higher prediction accuracy and longer effective prediction distance than the original algorithm and can predict the amplitude death of a system.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-022-00044-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep learning prediction of amplitude death\",\"authors\":\"Pengcheng Ji,&nbsp;Tingyi Yu,&nbsp;Yaxuan Zhang,&nbsp;Wei Gong,&nbsp;Qingyun Yu,&nbsp;Li Li\",\"doi\":\"10.1007/s43684-022-00044-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Affected by parameter drift and coupling organization, nonlinear dynamical systems exhibit suppressed oscillations. This phenomenon is called amplitude death. In various complex systems, amplitude death is a typical critical phenomenon, which may lead to the functional collapse of the system. Therefore, an important issue is how to effectively predict critical phenomena based on the data in the system oscillation state. This paper proposes an enhanced Informer model to predict amplitude death. The model employs an attention mechanism to capture the long-range associations of the system time series and tracks the effect of parameter drift on the system dynamics through an accompanying parameter input channel. The experimental results based on the coupled Rössler and Lorentz systems show that the enhanced informer has higher prediction accuracy and longer effective prediction distance than the original algorithm and can predict the amplitude death of a system.</p></div>\",\"PeriodicalId\":71187,\"journal\":{\"name\":\"自主智能系统(英文)\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43684-022-00044-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自主智能系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43684-022-00044-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-022-00044-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受参数漂移和耦合组织的影响,非线性动力系统会出现被抑制的振荡。这种现象被称为振幅死亡。在各种复杂系统中,振幅死亡是一种典型的临界现象,可能导致系统功能崩溃。因此,如何根据系统振荡状态的数据有效预测临界现象是一个重要问题。本文提出了一种增强型 Informer 模型来预测振幅死亡。该模型采用注意机制捕捉系统时间序列的长程关联,并通过伴随的参数输入通道跟踪参数漂移对系统动力学的影响。基于罗斯勒和洛伦兹耦合系统的实验结果表明,增强型信息器比原始算法具有更高的预测精度和更长的有效预测距离,可以预测系统的振幅死亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning prediction of amplitude death

Affected by parameter drift and coupling organization, nonlinear dynamical systems exhibit suppressed oscillations. This phenomenon is called amplitude death. In various complex systems, amplitude death is a typical critical phenomenon, which may lead to the functional collapse of the system. Therefore, an important issue is how to effectively predict critical phenomena based on the data in the system oscillation state. This paper proposes an enhanced Informer model to predict amplitude death. The model employs an attention mechanism to capture the long-range associations of the system time series and tracks the effect of parameter drift on the system dynamics through an accompanying parameter input channel. The experimental results based on the coupled Rössler and Lorentz systems show that the enhanced informer has higher prediction accuracy and longer effective prediction distance than the original algorithm and can predict the amplitude death of a system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信