损伤与未损伤RC框架的超frp复合层强化试验研究

IF 1 Q4 ENGINEERING, CIVIL
M. Sharbatdar, Norouz Ali Mohazen
{"title":"损伤与未损伤RC框架的超frp复合层强化试验研究","authors":"M. Sharbatdar, Norouz Ali Mohazen","doi":"10.22059/CEIJ.2020.275720.1549","DOIUrl":null,"url":null,"abstract":"FRC concretes with high strength are practical material for strengthening existing particularly damaged concrete structures and able to dissipate seismic energy. The main purpose of this paper was to using high strength-FRC concrete for strengthening the damaged and undamaged frames. The five experimental specimens were loaded laterally and vertical gravity loads, simultaneously. The first specimen was a reference without strengthening, but the second same specimen was strengthened. The other three specimens were initially were loaded up to 55, 75, and 100% of the maximum capacity of the reference specimen and prepared as damaged specimens. The damaged specimens were laterally and vertically loaded. The test results showed that ductility of the undamaged strengthened frame was 2.2 times that of the reference specimen, while these amounts for three strengthened specimens (55, 75, and 100%) were up to 110, 60, 15 increase compared to the reference.  The maximum lateral capacity of second undamaged, third fourth, and fifth damaged specimens were 38 and 35, 16, 9% more than that of reference; while the significant increase of energy absorption from 1.28 to 2.37 times reference was observed.","PeriodicalId":43959,"journal":{"name":"Civil Engineering Infrastructures Journal-CEIJ","volume":"53 1","pages":"227-239"},"PeriodicalIF":1.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Strengthening of Damaged and Un-Damaged RC Frames with Ultra-FRC Composite Layers\",\"authors\":\"M. Sharbatdar, Norouz Ali Mohazen\",\"doi\":\"10.22059/CEIJ.2020.275720.1549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FRC concretes with high strength are practical material for strengthening existing particularly damaged concrete structures and able to dissipate seismic energy. The main purpose of this paper was to using high strength-FRC concrete for strengthening the damaged and undamaged frames. The five experimental specimens were loaded laterally and vertical gravity loads, simultaneously. The first specimen was a reference without strengthening, but the second same specimen was strengthened. The other three specimens were initially were loaded up to 55, 75, and 100% of the maximum capacity of the reference specimen and prepared as damaged specimens. The damaged specimens were laterally and vertically loaded. The test results showed that ductility of the undamaged strengthened frame was 2.2 times that of the reference specimen, while these amounts for three strengthened specimens (55, 75, and 100%) were up to 110, 60, 15 increase compared to the reference.  The maximum lateral capacity of second undamaged, third fourth, and fifth damaged specimens were 38 and 35, 16, 9% more than that of reference; while the significant increase of energy absorption from 1.28 to 2.37 times reference was observed.\",\"PeriodicalId\":43959,\"journal\":{\"name\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"volume\":\"53 1\",\"pages\":\"227-239\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/CEIJ.2020.275720.1549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Infrastructures Journal-CEIJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/CEIJ.2020.275720.1549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

高强度FRC混凝土是加固现有特别受损混凝土结构的实用材料,具有分散地震能量的作用。本文的主要目的是采用高强度frc混凝土对损坏和未损坏的框架进行加固。5个试验试件同时承受横向和纵向重力荷载。第一个样品是没有加强的参考,但第二个相同的样品是加强的。其余3个试样分别初始加载至参考试样最大容量的55、75和100%,并作为损伤试样制备。试件受横向和纵向荷载作用。试验结果表明,未损伤加固框架的延性是参考试件的2.2倍,而3个加固试件(55、75、100%)的延性分别比参考试件提高了110、60、15倍。第2、3、4、5个损伤试件的最大侧向承载力分别比参考试件高38、35、16、9%;而能量吸收从参比的1.28倍显著增加到2.37倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Strengthening of Damaged and Un-Damaged RC Frames with Ultra-FRC Composite Layers
FRC concretes with high strength are practical material for strengthening existing particularly damaged concrete structures and able to dissipate seismic energy. The main purpose of this paper was to using high strength-FRC concrete for strengthening the damaged and undamaged frames. The five experimental specimens were loaded laterally and vertical gravity loads, simultaneously. The first specimen was a reference without strengthening, but the second same specimen was strengthened. The other three specimens were initially were loaded up to 55, 75, and 100% of the maximum capacity of the reference specimen and prepared as damaged specimens. The damaged specimens were laterally and vertically loaded. The test results showed that ductility of the undamaged strengthened frame was 2.2 times that of the reference specimen, while these amounts for three strengthened specimens (55, 75, and 100%) were up to 110, 60, 15 increase compared to the reference.  The maximum lateral capacity of second undamaged, third fourth, and fifth damaged specimens were 38 and 35, 16, 9% more than that of reference; while the significant increase of energy absorption from 1.28 to 2.37 times reference was observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
60.00%
发文量
0
审稿时长
47 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信