确定参数化曲面何时为旋转曲面

IF 0.4 Q4 MATHEMATICS
Haohao Wang, Jerzy Wojdylo
{"title":"确定参数化曲面何时为旋转曲面","authors":"Haohao Wang, Jerzy Wojdylo","doi":"10.36890/iejg.1064089","DOIUrl":null,"url":null,"abstract":"A surface of revolution is a surface that can be generated by rotating a planar curve (the directrix)\naround a straight line (the axis) in the same plane. Using the mathematics of quaternions, we provide a parametric\nequation of a surface of revolution generated by rotating a directrix about an axis by quaternion multiplication\nof the parametric representations of the directrix curve and the line of axis. Then, we describe an algorithm\nto determine whether a parametric surface is a surface of revolution, and identify the axis and the directrix.\nExamples are provided to illustrate our algorithm.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DETERMINE WHEN A PARAMETRIC SURFACE IS A SURFACE OF REVOLUTION\",\"authors\":\"Haohao Wang, Jerzy Wojdylo\",\"doi\":\"10.36890/iejg.1064089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A surface of revolution is a surface that can be generated by rotating a planar curve (the directrix)\\naround a straight line (the axis) in the same plane. Using the mathematics of quaternions, we provide a parametric\\nequation of a surface of revolution generated by rotating a directrix about an axis by quaternion multiplication\\nof the parametric representations of the directrix curve and the line of axis. Then, we describe an algorithm\\nto determine whether a parametric surface is a surface of revolution, and identify the axis and the directrix.\\nExamples are provided to illustrate our algorithm.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/iejg.1064089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1064089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

旋转曲面是指通过在同一平面内绕直线(轴)旋转平面曲线(准线)而生成的曲面。使用四元数的数学,我们提供了一个旋转表面的参数方程,该旋转表面是通过将准线绕轴旋转,将准线曲线和轴线的参数表示乘以四元数而产生的。然后,我们描述了一种算法来确定参数曲面是否是旋转曲面,并确定轴和准线。举例说明了我们的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DETERMINE WHEN A PARAMETRIC SURFACE IS A SURFACE OF REVOLUTION
A surface of revolution is a surface that can be generated by rotating a planar curve (the directrix) around a straight line (the axis) in the same plane. Using the mathematics of quaternions, we provide a parametric equation of a surface of revolution generated by rotating a directrix about an axis by quaternion multiplication of the parametric representations of the directrix curve and the line of axis. Then, we describe an algorithm to determine whether a parametric surface is a surface of revolution, and identify the axis and the directrix. Examples are provided to illustrate our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信