准周期Schrödinger算子Hölder连续性的频率依赖性

IF 1.1 4区 数学 Q1 MATHEMATICS
P. Munger
{"title":"准周期Schrödinger算子Hölder连续性的频率依赖性","authors":"P. Munger","doi":"10.4171/JFG/68","DOIUrl":null,"url":null,"abstract":"We prove estimates on the Hölder exponent of the density of states measure for discrete Schrödinger operators with potential of the form V (n)= λ (b(n+1)βc−bnβc), with λ large enough, and conclude that for almost all values of β , the density of states measure is not Hölder continuous.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JFG/68","citationCount":"4","resultStr":"{\"title\":\"Frequency dependence of Hölder continuity for quasiperiodic Schrödinger operators\",\"authors\":\"P. Munger\",\"doi\":\"10.4171/JFG/68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove estimates on the Hölder exponent of the density of states measure for discrete Schrödinger operators with potential of the form V (n)= λ (b(n+1)βc−bnβc), with λ large enough, and conclude that for almost all values of β , the density of states measure is not Hölder continuous.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/JFG/68\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JFG/68\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JFG/68","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们证明了V(n)=λ(b(n+1)βc−bnβc)形式的离散Schrödinger算子的态密度测度的Hölder指数的估计,其中λ足够大,并得出结论,对于几乎所有的β值,态密度测度都不是Hölder连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency dependence of Hölder continuity for quasiperiodic Schrödinger operators
We prove estimates on the Hölder exponent of the density of states measure for discrete Schrödinger operators with potential of the form V (n)= λ (b(n+1)βc−bnβc), with λ large enough, and conclude that for almost all values of β , the density of states measure is not Hölder continuous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信