{"title":"准周期Schrödinger算子Hölder连续性的频率依赖性","authors":"P. Munger","doi":"10.4171/JFG/68","DOIUrl":null,"url":null,"abstract":"We prove estimates on the Hölder exponent of the density of states measure for discrete Schrödinger operators with potential of the form V (n)= λ (b(n+1)βc−bnβc), with λ large enough, and conclude that for almost all values of β , the density of states measure is not Hölder continuous.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JFG/68","citationCount":"4","resultStr":"{\"title\":\"Frequency dependence of Hölder continuity for quasiperiodic Schrödinger operators\",\"authors\":\"P. Munger\",\"doi\":\"10.4171/JFG/68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove estimates on the Hölder exponent of the density of states measure for discrete Schrödinger operators with potential of the form V (n)= λ (b(n+1)βc−bnβc), with λ large enough, and conclude that for almost all values of β , the density of states measure is not Hölder continuous.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/JFG/68\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JFG/68\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JFG/68","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Frequency dependence of Hölder continuity for quasiperiodic Schrödinger operators
We prove estimates on the Hölder exponent of the density of states measure for discrete Schrödinger operators with potential of the form V (n)= λ (b(n+1)βc−bnβc), with λ large enough, and conclude that for almost all values of β , the density of states measure is not Hölder continuous.