openrh:利用术中刺激拉曼组织学优化脑肿瘤手术

Cheng Jiang, Asadur Chowdury, X. Hou, A. Kondepudi, C. Freudiger, Kyle S. Conway, S. Camelo-Piragua, D. Orringer, Ho Hin Lee, Todd C. Hollon
{"title":"openrh:利用术中刺激拉曼组织学优化脑肿瘤手术","authors":"Cheng Jiang, Asadur Chowdury, X. Hou, A. Kondepudi, C. Freudiger, Kyle S. Conway, S. Camelo-Piragua, D. Orringer, Ho Hin Lee, Todd C. Hollon","doi":"10.48550/arXiv.2206.08439","DOIUrl":null,"url":null,"abstract":"Accurate intraoperative diagnosis is essential for providing safe and effective care during brain tumor surgery. Our standard-of-care diagnostic methods are time, resource, and labor intensive, which restricts access to optimal surgical treatments. To address these limitations, we propose an alternative workflow that combines stimulated Raman histology (SRH), a rapid optical imaging method, with deep learning-based automated interpretation of SRH images for intraoperative brain tumor diagnosis and real-time surgical decision support. Here, we present OpenSRH, the first public dataset of clinical SRH images from 300+ brain tumors patients and 1300+ unique whole slide optical images. OpenSRH contains data from the most common brain tumors diagnoses, full pathologic annotations, whole slide tumor segmentations, raw and processed optical imaging data for end-to-end model development and validation. We provide a framework for patch-based whole slide SRH classification and inference using weak (i.e. patient-level) diagnostic labels. Finally, we benchmark two computer vision tasks: multiclass histologic brain tumor classification and patch-based contrastive representation learning. We hope OpenSRH will facilitate the clinical translation of rapid optical imaging and real-time ML-based surgical decision support in order to improve the access, safety, and efficacy of cancer surgery in the era of precision medicine. Dataset access, code, and benchmarks are available at https://opensrh.mlins.org.","PeriodicalId":72099,"journal":{"name":"Advances in neural information processing systems","volume":"35 DB 1","pages":"28502-28516"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"OpenSRH: optimizing brain tumor surgery using intraoperative stimulated Raman histology\",\"authors\":\"Cheng Jiang, Asadur Chowdury, X. Hou, A. Kondepudi, C. Freudiger, Kyle S. Conway, S. Camelo-Piragua, D. Orringer, Ho Hin Lee, Todd C. Hollon\",\"doi\":\"10.48550/arXiv.2206.08439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate intraoperative diagnosis is essential for providing safe and effective care during brain tumor surgery. Our standard-of-care diagnostic methods are time, resource, and labor intensive, which restricts access to optimal surgical treatments. To address these limitations, we propose an alternative workflow that combines stimulated Raman histology (SRH), a rapid optical imaging method, with deep learning-based automated interpretation of SRH images for intraoperative brain tumor diagnosis and real-time surgical decision support. Here, we present OpenSRH, the first public dataset of clinical SRH images from 300+ brain tumors patients and 1300+ unique whole slide optical images. OpenSRH contains data from the most common brain tumors diagnoses, full pathologic annotations, whole slide tumor segmentations, raw and processed optical imaging data for end-to-end model development and validation. We provide a framework for patch-based whole slide SRH classification and inference using weak (i.e. patient-level) diagnostic labels. Finally, we benchmark two computer vision tasks: multiclass histologic brain tumor classification and patch-based contrastive representation learning. We hope OpenSRH will facilitate the clinical translation of rapid optical imaging and real-time ML-based surgical decision support in order to improve the access, safety, and efficacy of cancer surgery in the era of precision medicine. Dataset access, code, and benchmarks are available at https://opensrh.mlins.org.\",\"PeriodicalId\":72099,\"journal\":{\"name\":\"Advances in neural information processing systems\",\"volume\":\"35 DB 1\",\"pages\":\"28502-28516\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in neural information processing systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.08439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neural information processing systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.08439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

准确的术中诊断对于提供安全有效的脑肿瘤手术护理至关重要。我们的标准护理诊断方法是时间,资源和劳动密集型的,这限制了获得最佳的手术治疗。为了解决这些限制,我们提出了一种替代工作流程,将刺激拉曼组织学(SRH),一种快速光学成像方法,与基于深度学习的SRH图像自动解释相结合,用于术中脑肿瘤诊断和实时手术决策支持。在这里,我们展示了OpenSRH,这是第一个公开的数据集,包括300多名脑肿瘤患者的临床SRH图像和1300多张独特的全幻灯片光学图像。openrh包含来自最常见脑肿瘤诊断的数据,完整的病理注释,整个肿瘤切片,原始和处理的光学成像数据,用于端到端模型的开发和验证。我们提供了一个使用弱(即患者水平)诊断标签的基于贴片的整片SRH分类和推断的框架。最后,我们对两个计算机视觉任务进行了基准测试:多类组织学脑肿瘤分类和基于补丁的对比表征学习。我们希望openrh能够促进快速光学成像和实时基于ml的手术决策支持的临床转化,以提高精准医学时代癌症手术的可及性、安全性和有效性。数据集访问、代码和基准测试可在https://opensrh.mlins.org上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OpenSRH: optimizing brain tumor surgery using intraoperative stimulated Raman histology
Accurate intraoperative diagnosis is essential for providing safe and effective care during brain tumor surgery. Our standard-of-care diagnostic methods are time, resource, and labor intensive, which restricts access to optimal surgical treatments. To address these limitations, we propose an alternative workflow that combines stimulated Raman histology (SRH), a rapid optical imaging method, with deep learning-based automated interpretation of SRH images for intraoperative brain tumor diagnosis and real-time surgical decision support. Here, we present OpenSRH, the first public dataset of clinical SRH images from 300+ brain tumors patients and 1300+ unique whole slide optical images. OpenSRH contains data from the most common brain tumors diagnoses, full pathologic annotations, whole slide tumor segmentations, raw and processed optical imaging data for end-to-end model development and validation. We provide a framework for patch-based whole slide SRH classification and inference using weak (i.e. patient-level) diagnostic labels. Finally, we benchmark two computer vision tasks: multiclass histologic brain tumor classification and patch-based contrastive representation learning. We hope OpenSRH will facilitate the clinical translation of rapid optical imaging and real-time ML-based surgical decision support in order to improve the access, safety, and efficacy of cancer surgery in the era of precision medicine. Dataset access, code, and benchmarks are available at https://opensrh.mlins.org.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信