基于掐点的引射器跨临界CO2准二次压缩循环性能分析

Q2 Engineering
Designs Pub Date : 2023-07-04 DOI:10.3390/designs7040089
Junlan Yang, Xin Zhang, Linxiu Wang, Yufan Du, Yifei Han
{"title":"基于掐点的引射器跨临界CO2准二次压缩循环性能分析","authors":"Junlan Yang, Xin Zhang, Linxiu Wang, Yufan Du, Yifei Han","doi":"10.3390/designs7040089","DOIUrl":null,"url":null,"abstract":"To investigate the performance of transcritical CO2 quasi-secondary compression cycle with ejector (TCIEJ) for heat pump water heaters, the thermodynamic model of TCIEJ is established based on the pinch point, and TCEX, TCEJ, and TCI are selected as comparisons. The effects of changing high pressure and ambient temperature on the heating COP and compressor exhaust temperature are analyzed, and the influence of cooling water inlet and outlet temperature and vapor injection pressure on TCIEJ is further analyzed. The results show that there are optimal high pressures that make the heating COP of the four heat pump cycles reach the maximum value, of which TCIEJ has the best performance. At an ambient temperature of −15 °C, the maximum heating COP of TCIEJ increased by about 20.5%, 14.9%, and 7.9% compared with TCEX, TCEJ, and TCI. With the increase in ambient temperature, the optimal high pressure continues to increase, and the corresponding maximum heating COP gradually increases. Selecting the geometric mean of high pressure and evaporation pressure as the optimal vapor injection pressure for TCIEJ, the error is small compared to the actual optimal vapor injection pressure. With the increase in ambient temperature and cooling water outlet temperature, the optimal high pressure of TCIEJ continues to increase, and the correlation formula of optimal high pressure is fitted according to the simulation results.","PeriodicalId":53150,"journal":{"name":"Designs","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Transcritical CO2 Quasi-Secondary Compression Cycle with Ejector Based on Pinch Point\",\"authors\":\"Junlan Yang, Xin Zhang, Linxiu Wang, Yufan Du, Yifei Han\",\"doi\":\"10.3390/designs7040089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate the performance of transcritical CO2 quasi-secondary compression cycle with ejector (TCIEJ) for heat pump water heaters, the thermodynamic model of TCIEJ is established based on the pinch point, and TCEX, TCEJ, and TCI are selected as comparisons. The effects of changing high pressure and ambient temperature on the heating COP and compressor exhaust temperature are analyzed, and the influence of cooling water inlet and outlet temperature and vapor injection pressure on TCIEJ is further analyzed. The results show that there are optimal high pressures that make the heating COP of the four heat pump cycles reach the maximum value, of which TCIEJ has the best performance. At an ambient temperature of −15 °C, the maximum heating COP of TCIEJ increased by about 20.5%, 14.9%, and 7.9% compared with TCEX, TCEJ, and TCI. With the increase in ambient temperature, the optimal high pressure continues to increase, and the corresponding maximum heating COP gradually increases. Selecting the geometric mean of high pressure and evaporation pressure as the optimal vapor injection pressure for TCIEJ, the error is small compared to the actual optimal vapor injection pressure. With the increase in ambient temperature and cooling water outlet temperature, the optimal high pressure of TCIEJ continues to increase, and the correlation formula of optimal high pressure is fitted according to the simulation results.\",\"PeriodicalId\":53150,\"journal\":{\"name\":\"Designs\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs\",\"FirstCategoryId\":\"1094\",\"ListUrlMain\":\"https://doi.org/10.3390/designs7040089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs","FirstCategoryId":"1094","ListUrlMain":"https://doi.org/10.3390/designs7040089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为了研究热泵热水器带喷射器的跨临界CO2准二次压缩循环(TCIEJ)的性能,基于夹点建立了TCIEJ的热力学模型,并选取TCEX、TCEJ和TCI进行比较。分析了高压和环境温度变化对加热COP和压缩机排气温度的影响,并进一步分析了冷却水进出口温度和汽喷压力对TCIEJ的影响。结果表明,存在使4个热泵循环的供热COP达到最大值的最优高压,其中TCIEJ表现最佳。在−15℃环境温度下,TCIEJ的最大加热COP比TCEX、TCEJ和TCI分别增加了20.5%、14.9%和7.9%。随着环境温度的升高,最优高压持续增大,相应的最大供热COP逐渐增大。选择高压和蒸发压力的几何平均值作为TCIEJ的最佳注汽压力,与实际最佳注汽压力相比误差较小。随着环境温度和冷却水出口温度的升高,TCIEJ的最优高压不断增大,并根据仿真结果拟合出最优高压的相关公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Transcritical CO2 Quasi-Secondary Compression Cycle with Ejector Based on Pinch Point
To investigate the performance of transcritical CO2 quasi-secondary compression cycle with ejector (TCIEJ) for heat pump water heaters, the thermodynamic model of TCIEJ is established based on the pinch point, and TCEX, TCEJ, and TCI are selected as comparisons. The effects of changing high pressure and ambient temperature on the heating COP and compressor exhaust temperature are analyzed, and the influence of cooling water inlet and outlet temperature and vapor injection pressure on TCIEJ is further analyzed. The results show that there are optimal high pressures that make the heating COP of the four heat pump cycles reach the maximum value, of which TCIEJ has the best performance. At an ambient temperature of −15 °C, the maximum heating COP of TCIEJ increased by about 20.5%, 14.9%, and 7.9% compared with TCEX, TCEJ, and TCI. With the increase in ambient temperature, the optimal high pressure continues to increase, and the corresponding maximum heating COP gradually increases. Selecting the geometric mean of high pressure and evaporation pressure as the optimal vapor injection pressure for TCIEJ, the error is small compared to the actual optimal vapor injection pressure. With the increase in ambient temperature and cooling water outlet temperature, the optimal high pressure of TCIEJ continues to increase, and the correlation formula of optimal high pressure is fitted according to the simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designs
Designs Engineering-Engineering (miscellaneous)
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信