二次急动系统的零Hopf分岔与混沌

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
B. Sang, Rizgar H. Salih, Ning Wang
{"title":"二次急动系统的零Hopf分岔与混沌","authors":"B. Sang, Rizgar H. Salih, Ning Wang","doi":"10.22541/au.158291222.23595484","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to propose some coefficient conditions, characterizing the stability of periodic solutions bifurcated from zero-Hopf bifurcations of the general quadratic jerk system, and apply these theoretical results to a special jerk system in order to predict chaos. First, we characterize the zero-Hopf bifurcations of the general quadratic jerk system in $\\mathbb{R}^3$. The coefficient conditions on stability of periodic solutions are obtained via the averaging theory of first order. Next, we apply the theoretical results to a two-parameter jerk system. Finally special attention is paid to a jerk system with one non-negative parameter $\\epsilon$ and one non-linearity. By studying the continuation of periodic solution initiating at the zero-Hopf bifurcation, we numerically find a sequence of period doubling bifurcations which leads to the creation of chaotic attractor.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Zero-Hopf bifurcations and chaos of quadratic jerk systems\",\"authors\":\"B. Sang, Rizgar H. Salih, Ning Wang\",\"doi\":\"10.22541/au.158291222.23595484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to propose some coefficient conditions, characterizing the stability of periodic solutions bifurcated from zero-Hopf bifurcations of the general quadratic jerk system, and apply these theoretical results to a special jerk system in order to predict chaos. First, we characterize the zero-Hopf bifurcations of the general quadratic jerk system in $\\\\mathbb{R}^3$. The coefficient conditions on stability of periodic solutions are obtained via the averaging theory of first order. Next, we apply the theoretical results to a two-parameter jerk system. Finally special attention is paid to a jerk system with one non-negative parameter $\\\\epsilon$ and one non-linearity. By studying the continuation of periodic solution initiating at the zero-Hopf bifurcation, we numerically find a sequence of period doubling bifurcations which leads to the creation of chaotic attractor.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22541/au.158291222.23595484\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22541/au.158291222.23595484","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是提出一些系数条件,表征一般二次加加系统从零Hopf分支分叉的周期解的稳定性,并将这些理论结果应用于一个特殊的加加系统,以预测混沌。首先,我们刻画了$\mathbb{R}^3$中一般二次加加系统的零Hopf分岔。利用一阶平均理论得到了周期解稳定性的系数条件。接下来,我们将理论结果应用于一个双参数急动系统。最后,特别注意具有一个非负参数$\epsilon$和一个非线性的急动系统。通过研究起始于零Hopf分岔的周期解的连续性,我们在数值上找到了一个导致混沌吸引子产生的倍周期分岔序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-Hopf bifurcations and chaos of quadratic jerk systems
The purpose of this paper is to propose some coefficient conditions, characterizing the stability of periodic solutions bifurcated from zero-Hopf bifurcations of the general quadratic jerk system, and apply these theoretical results to a special jerk system in order to predict chaos. First, we characterize the zero-Hopf bifurcations of the general quadratic jerk system in $\mathbb{R}^3$. The coefficient conditions on stability of periodic solutions are obtained via the averaging theory of first order. Next, we apply the theoretical results to a two-parameter jerk system. Finally special attention is paid to a jerk system with one non-negative parameter $\epsilon$ and one non-linearity. By studying the continuation of periodic solution initiating at the zero-Hopf bifurcation, we numerically find a sequence of period doubling bifurcations which leads to the creation of chaotic attractor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信