Jesus H. Warnes , Fagner M. de Paula , Natanael C. Costa , Olimpio P. de Sá Neto
{"title":"具有猝灭无序的Jaynes-Cummings模型中的量子相干动力学","authors":"Jesus H. Warnes , Fagner M. de Paula , Natanael C. Costa , Olimpio P. de Sá Neto","doi":"10.1016/j.physo.2023.100146","DOIUrl":null,"url":null,"abstract":"<div><p>We have applied the quantum coherence theory to the Jaynes–Cummings model for three types of quenched disorder distribution: uniform, Gaussian, and Cauchy-Lorentz. Under certain conditions, we have observed a beat-damping behavior on the dynamics of the <span><math><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-norm of coherence. This phenomenon is more evident for the uniform disorder distribution.</p></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"15 ","pages":"Article 100146"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of quantum coherence in the Jaynes–Cummings model with quenched disorder\",\"authors\":\"Jesus H. Warnes , Fagner M. de Paula , Natanael C. Costa , Olimpio P. de Sá Neto\",\"doi\":\"10.1016/j.physo.2023.100146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have applied the quantum coherence theory to the Jaynes–Cummings model for three types of quenched disorder distribution: uniform, Gaussian, and Cauchy-Lorentz. Under certain conditions, we have observed a beat-damping behavior on the dynamics of the <span><math><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-norm of coherence. This phenomenon is more evident for the uniform disorder distribution.</p></div>\",\"PeriodicalId\":36067,\"journal\":{\"name\":\"Physics Open\",\"volume\":\"15 \",\"pages\":\"Article 100146\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266603262300011X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266603262300011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Dynamics of quantum coherence in the Jaynes–Cummings model with quenched disorder
We have applied the quantum coherence theory to the Jaynes–Cummings model for three types of quenched disorder distribution: uniform, Gaussian, and Cauchy-Lorentz. Under certain conditions, we have observed a beat-damping behavior on the dynamics of the -norm of coherence. This phenomenon is more evident for the uniform disorder distribution.