聚合物夹式血管结扎器结扎部分结构改进的研究

Q4 Engineering
Sung-ho Han, Boklok Choi
{"title":"聚合物夹式血管结扎器结扎部分结构改进的研究","authors":"Sung-ho Han, Boklok Choi","doi":"10.7736/jkspe.023.027","DOIUrl":null,"url":null,"abstract":"When laparoscopic surgery is performed, polymer clip blood vessel ligators are widely used to prevent bleeding and secure surgical vision. However, long-term use of such ligators can cause many structural problems, especially in the jaw part where the clip is mounted directly to the blood vessel. For example, jaws of the ligation device might be opened above the design value and upper and lower jaws might be twisted against each other. In addition, buckling or bending deformation can easily occur at the tip of the inner shaft. Due to these problems, the ligation machine cannot ligate the clip properly, which might lead to a medical accident. Therefore, in this study, the design was changed to improve these problems by increasing the pin diameter and contact surface, applying a double pin structure, and changing the structure of the shaft tip. As a result, the modified model showed 12.5% and 10.2% improvements in opening and twisting stiffness compared to the initial model with 7.2% and 58% improvements in critical buckling load and bending stiffness, respectively.","PeriodicalId":37663,"journal":{"name":"Journal of the Korean Society for Precision Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on the Structural Improvement of Ligation Parts of a Polymer Clip Blood Vessel Ligator\",\"authors\":\"Sung-ho Han, Boklok Choi\",\"doi\":\"10.7736/jkspe.023.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When laparoscopic surgery is performed, polymer clip blood vessel ligators are widely used to prevent bleeding and secure surgical vision. However, long-term use of such ligators can cause many structural problems, especially in the jaw part where the clip is mounted directly to the blood vessel. For example, jaws of the ligation device might be opened above the design value and upper and lower jaws might be twisted against each other. In addition, buckling or bending deformation can easily occur at the tip of the inner shaft. Due to these problems, the ligation machine cannot ligate the clip properly, which might lead to a medical accident. Therefore, in this study, the design was changed to improve these problems by increasing the pin diameter and contact surface, applying a double pin structure, and changing the structure of the shaft tip. As a result, the modified model showed 12.5% and 10.2% improvements in opening and twisting stiffness compared to the initial model with 7.2% and 58% improvements in critical buckling load and bending stiffness, respectively.\",\"PeriodicalId\":37663,\"journal\":{\"name\":\"Journal of the Korean Society for Precision Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Precision Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7736/jkspe.023.027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7736/jkspe.023.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在腹腔镜手术中,聚合物夹血管结扎器广泛用于防止出血和保护手术视力。然而,长期使用这种结扎器会导致许多结构问题,特别是在下颌部分,夹子直接安装在血管上。例如,结扎装置的钳口可以在设计值以上打开,上下钳口可以相互扭转。此外,内轴的尖端容易发生屈曲或弯曲变形。由于这些问题,结扎机无法正确结扎夹子,可能导致医疗事故。因此,在本研究中,通过增加销直径和接触面,采用双销结构,改变轴尖结构,改变设计来改善这些问题。结果表明,与初始模型相比,改进模型的开启刚度和扭转刚度分别提高了12.5%和10.2%,临界屈曲载荷和弯曲刚度分别提高了7.2%和58%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on the Structural Improvement of Ligation Parts of a Polymer Clip Blood Vessel Ligator
When laparoscopic surgery is performed, polymer clip blood vessel ligators are widely used to prevent bleeding and secure surgical vision. However, long-term use of such ligators can cause many structural problems, especially in the jaw part where the clip is mounted directly to the blood vessel. For example, jaws of the ligation device might be opened above the design value and upper and lower jaws might be twisted against each other. In addition, buckling or bending deformation can easily occur at the tip of the inner shaft. Due to these problems, the ligation machine cannot ligate the clip properly, which might lead to a medical accident. Therefore, in this study, the design was changed to improve these problems by increasing the pin diameter and contact surface, applying a double pin structure, and changing the structure of the shaft tip. As a result, the modified model showed 12.5% and 10.2% improvements in opening and twisting stiffness compared to the initial model with 7.2% and 58% improvements in critical buckling load and bending stiffness, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Korean Society for Precision Engineering
Journal of the Korean Society for Precision Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
0.50
自引率
0.00%
发文量
104
期刊介绍: Journal of the Korean Society for Precision Engineering (JKSPE) is devoted to publishing original research articles with high ethical standard on all aspects of precision engineering and manufacturing. Specifically, the journal focuses on articles related to improving the precision of machines and manufacturing processes through implementation of creative solutions that stem from advanced research using novel experimental methods, predictive modeling techniques, and rigorous analyses based on mechanical engineering or multidisciplinary approach. The expected outcomes of the knowledge disseminated from JKSPE are enhanced reliability, better motion precision, higher measurement accuracy, and sufficient reliability of precision systems. The various topics covered by JKSPE include: Precision Manufacturing processes, Precision Measurements, Robotics and Automation / Control, Smart Manufacturing System, Design and Materials, Machine Tools, Nano/Micro Technology, Biomechanical Engineering, Additive Manufacturing System, Green Manufacturing Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信