{"title":"复合机制位置对薄膜光伏电池温度敏感性的影响","authors":"N. Kata, D. Diouf, A. Darga, A. Maiga","doi":"10.1051/epjpv/2019008","DOIUrl":null,"url":null,"abstract":"Thin film solar cells temperature sensitivity and impact of the main recombination mechanism location are investigated in this paper. The main mechanisms in bulk and at the heterojunction interface are discriminated. Using a 1D simulation software, “Solar Cell Capacitance Simulator” (SCAPS), we observed a higher temperature coefficient of open circuit voltage (Voc) for cells with main recombination centers at the interface than the one with main recombination centers in volume. Furthermore, an LTSpice module model is used to visualize the effects of the recombination centers' location on the performance ratios of the modules. The results show more degradation for the ratios performance of cells with the main recombination mechanisms at the interface than those in volume.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/epjpv/2019008","citationCount":"4","resultStr":"{\"title\":\"The effect of the recombination mechanisms location on the temperature sensitivity of thin-film photovoltaic cells\",\"authors\":\"N. Kata, D. Diouf, A. Darga, A. Maiga\",\"doi\":\"10.1051/epjpv/2019008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thin film solar cells temperature sensitivity and impact of the main recombination mechanism location are investigated in this paper. The main mechanisms in bulk and at the heterojunction interface are discriminated. Using a 1D simulation software, “Solar Cell Capacitance Simulator” (SCAPS), we observed a higher temperature coefficient of open circuit voltage (Voc) for cells with main recombination centers at the interface than the one with main recombination centers in volume. Furthermore, an LTSpice module model is used to visualize the effects of the recombination centers' location on the performance ratios of the modules. The results show more degradation for the ratios performance of cells with the main recombination mechanisms at the interface than those in volume.\",\"PeriodicalId\":42768,\"journal\":{\"name\":\"EPJ Photovoltaics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/epjpv/2019008\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Photovoltaics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjpv/2019008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Photovoltaics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjpv/2019008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
The effect of the recombination mechanisms location on the temperature sensitivity of thin-film photovoltaic cells
Thin film solar cells temperature sensitivity and impact of the main recombination mechanism location are investigated in this paper. The main mechanisms in bulk and at the heterojunction interface are discriminated. Using a 1D simulation software, “Solar Cell Capacitance Simulator” (SCAPS), we observed a higher temperature coefficient of open circuit voltage (Voc) for cells with main recombination centers at the interface than the one with main recombination centers in volume. Furthermore, an LTSpice module model is used to visualize the effects of the recombination centers' location on the performance ratios of the modules. The results show more degradation for the ratios performance of cells with the main recombination mechanisms at the interface than those in volume.