Dummerstorf高生育率小鼠系FL1雌性繁殖性能提高的内分泌和分子因素

IF 3.6 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM
C. Ludwig, Simon Bohleber, A. Rebl, E. Wirth, M. T. Venuto, M. Langhammer, U. Schweizer, J. Weitzel, M. Michaelis
{"title":"Dummerstorf高生育率小鼠系FL1雌性繁殖性能提高的内分泌和分子因素","authors":"C. Ludwig, Simon Bohleber, A. Rebl, E. Wirth, M. T. Venuto, M. Langhammer, U. Schweizer, J. Weitzel, M. Michaelis","doi":"10.1530/JME-22-0012","DOIUrl":null,"url":null,"abstract":"The Dummerstorf high-fertility mouse line FL1 is a worldwide unique selection experiment for increased female reproductive performance. After more than 190 generations of selection, these mice doubled the amount of offspring per litter compared to the unselected control line. FL1 females have a superior lifetime fecundity and the highest Silver fecundity index that has been described in mice, while their offspring show no signs of growth retardation. The reasons for the increased reproductive performance remained unclear. Thus, this study aims to characterize the Dummerstorf high-fertility mouse line FL1 on endocrine and molecular levels on the female side. We analyzed parameters of the hypothalamic pituitary gonadal axis on both hormonal and transcriptional levels. Gonadotropin-releasing hormone and follicle-stimulating hormone (FSH) concentrations were decreased in FL1 throughout the whole estrous cycle. Luteinizing hormone (LH) was increased in FL1 mice in estrus. Progesterone concentrations were decreased in estrus in FL1 mice and not affected in diestrus. We used a holistic gene expression approach in the ovary to obtain a global picture of how the high-fertility phenotype is achieved. We found several differentially expressed genes in the ovaries of FL1 mice that are associated with different female fertility traits. Our results indicate that ovulation rates in mice can be increased despite decreased FSH levels. Cycle-related alterations of progesterone and LH levels have the potential to improve follicular maturation, and interactions of endocrine and molecular factors lead to enhanced follicular survival, more successful folliculogenesis and therefore higher ovulation rates in female FL1 mice.","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"69 1","pages":"285 - 298"},"PeriodicalIF":3.6000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Endocrine and molecular factors of increased female reproductive performance in the Dummerstorf high-fertility mouse line FL1\",\"authors\":\"C. Ludwig, Simon Bohleber, A. Rebl, E. Wirth, M. T. Venuto, M. Langhammer, U. Schweizer, J. Weitzel, M. Michaelis\",\"doi\":\"10.1530/JME-22-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Dummerstorf high-fertility mouse line FL1 is a worldwide unique selection experiment for increased female reproductive performance. After more than 190 generations of selection, these mice doubled the amount of offspring per litter compared to the unselected control line. FL1 females have a superior lifetime fecundity and the highest Silver fecundity index that has been described in mice, while their offspring show no signs of growth retardation. The reasons for the increased reproductive performance remained unclear. Thus, this study aims to characterize the Dummerstorf high-fertility mouse line FL1 on endocrine and molecular levels on the female side. We analyzed parameters of the hypothalamic pituitary gonadal axis on both hormonal and transcriptional levels. Gonadotropin-releasing hormone and follicle-stimulating hormone (FSH) concentrations were decreased in FL1 throughout the whole estrous cycle. Luteinizing hormone (LH) was increased in FL1 mice in estrus. Progesterone concentrations were decreased in estrus in FL1 mice and not affected in diestrus. We used a holistic gene expression approach in the ovary to obtain a global picture of how the high-fertility phenotype is achieved. We found several differentially expressed genes in the ovaries of FL1 mice that are associated with different female fertility traits. Our results indicate that ovulation rates in mice can be increased despite decreased FSH levels. Cycle-related alterations of progesterone and LH levels have the potential to improve follicular maturation, and interactions of endocrine and molecular factors lead to enhanced follicular survival, more successful folliculogenesis and therefore higher ovulation rates in female FL1 mice.\",\"PeriodicalId\":16570,\"journal\":{\"name\":\"Journal of molecular endocrinology\",\"volume\":\"69 1\",\"pages\":\"285 - 298\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JME-22-0012\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-22-0012","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 1

摘要

Dummerstorf高生育力小鼠FL1系是一项世界范围内独特的提高雌性生殖性能的选择实验。经过190多代的选择,这些老鼠每窝的后代数量是未选择的对照组的两倍。FL1雌性具有优越的终身繁殖力和最高的银繁殖力指数,而它们的后代没有生长迟缓的迹象。繁殖能力提高的原因尚不清楚。因此,本研究旨在从雌性内分泌和分子水平对Dummerstorf高生育小鼠系FL1进行表征。我们分析了下丘脑-垂体-性腺轴在激素和转录水平上的参数。促性腺激素释放激素和促卵泡激素(FSH)浓度在整个发情周期内均降低。FL1小鼠发情期黄体生成素(LH)升高。FL1小鼠发情时黄体酮浓度降低,发情时不受影响。我们在卵巢中使用整体基因表达方法来获得如何实现高生育表型的全局图片。我们在FL1小鼠的卵巢中发现了几个差异表达的基因,这些基因与不同的雌性生育特征相关。我们的研究结果表明,尽管卵泡刺激素水平降低,但小鼠的排卵率可以增加。周期相关的黄体酮和LH水平的改变有可能改善卵泡成熟,内分泌和分子因素的相互作用导致卵泡存活率提高,卵泡发生更成功,因此雌性FL1小鼠的排卵率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Endocrine and molecular factors of increased female reproductive performance in the Dummerstorf high-fertility mouse line FL1
The Dummerstorf high-fertility mouse line FL1 is a worldwide unique selection experiment for increased female reproductive performance. After more than 190 generations of selection, these mice doubled the amount of offspring per litter compared to the unselected control line. FL1 females have a superior lifetime fecundity and the highest Silver fecundity index that has been described in mice, while their offspring show no signs of growth retardation. The reasons for the increased reproductive performance remained unclear. Thus, this study aims to characterize the Dummerstorf high-fertility mouse line FL1 on endocrine and molecular levels on the female side. We analyzed parameters of the hypothalamic pituitary gonadal axis on both hormonal and transcriptional levels. Gonadotropin-releasing hormone and follicle-stimulating hormone (FSH) concentrations were decreased in FL1 throughout the whole estrous cycle. Luteinizing hormone (LH) was increased in FL1 mice in estrus. Progesterone concentrations were decreased in estrus in FL1 mice and not affected in diestrus. We used a holistic gene expression approach in the ovary to obtain a global picture of how the high-fertility phenotype is achieved. We found several differentially expressed genes in the ovaries of FL1 mice that are associated with different female fertility traits. Our results indicate that ovulation rates in mice can be increased despite decreased FSH levels. Cycle-related alterations of progesterone and LH levels have the potential to improve follicular maturation, and interactions of endocrine and molecular factors lead to enhanced follicular survival, more successful folliculogenesis and therefore higher ovulation rates in female FL1 mice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of molecular endocrinology
Journal of molecular endocrinology 医学-内分泌学与代谢
CiteScore
6.90
自引率
0.00%
发文量
96
审稿时长
1 months
期刊介绍: The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia. Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信