循环纳米压痕制备PVD CrSiN涂层的疲劳性能和力学性能

IF 1.6 Q4 MATERIALS SCIENCE, COATINGS & FILMS
K. Khlifi, N. Barhoumi, H. Dhiflaoui, A. Ben Cheikh Larbi
{"title":"循环纳米压痕制备PVD CrSiN涂层的疲劳性能和力学性能","authors":"K. Khlifi, N. Barhoumi, H. Dhiflaoui, A. Ben Cheikh Larbi","doi":"10.1080/17515831.2020.1844518","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, chromium nitride-based CrSiN coatings were deposited by PVD (physical vapour deposition) magnetron sputtering on XC100 steel substrate. Mechanical properties of CrSiN were investigated using monotonic nanoindentation test. It was found that CrSiN coatings had excellent mechanical properties, hardness of 30.52 ± 1.85 GPa and elastic modulus of 338.32 ± 13.5 GPa. Fatigue behaviour of CrSiN thin film was studied using multi-cycles nanoindentation test. Under cyclic nanoindentation, the unloading–reloading paths produced the hysteresis loops which reflect a fatigue effect. In addition, the increase in the number of indentation cycle induced the degradation of the film mechanical proprieties and the evolution of damage mechanism. The similarity between the indentation fatigue depth propagation and the conventional fatigue crack growth was exploited based on Manson–Coffin law to extract the fatigue properties of CrSiN coating. The obtained fatigue ductility coefficient was and the fatigue ductility exponent was c = −0.96.","PeriodicalId":23331,"journal":{"name":"Tribology - Materials, Surfaces & Interfaces","volume":"15 1","pages":"252 - 257"},"PeriodicalIF":1.6000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17515831.2020.1844518","citationCount":"1","resultStr":"{\"title\":\"Fatigue behaviour and mechanical properties of PVD CrSiN coating using cyclic nanoindentation\",\"authors\":\"K. Khlifi, N. Barhoumi, H. Dhiflaoui, A. Ben Cheikh Larbi\",\"doi\":\"10.1080/17515831.2020.1844518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study, chromium nitride-based CrSiN coatings were deposited by PVD (physical vapour deposition) magnetron sputtering on XC100 steel substrate. Mechanical properties of CrSiN were investigated using monotonic nanoindentation test. It was found that CrSiN coatings had excellent mechanical properties, hardness of 30.52 ± 1.85 GPa and elastic modulus of 338.32 ± 13.5 GPa. Fatigue behaviour of CrSiN thin film was studied using multi-cycles nanoindentation test. Under cyclic nanoindentation, the unloading–reloading paths produced the hysteresis loops which reflect a fatigue effect. In addition, the increase in the number of indentation cycle induced the degradation of the film mechanical proprieties and the evolution of damage mechanism. The similarity between the indentation fatigue depth propagation and the conventional fatigue crack growth was exploited based on Manson–Coffin law to extract the fatigue properties of CrSiN coating. The obtained fatigue ductility coefficient was and the fatigue ductility exponent was c = −0.96.\",\"PeriodicalId\":23331,\"journal\":{\"name\":\"Tribology - Materials, Surfaces & Interfaces\",\"volume\":\"15 1\",\"pages\":\"252 - 257\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17515831.2020.1844518\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology - Materials, Surfaces & Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17515831.2020.1844518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology - Materials, Surfaces & Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17515831.2020.1844518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本研究采用PVD(物理气相沉积)磁控溅射法在XC100钢基体上沉积了氮化铬基CrSiN涂层。采用单调纳米压痕试验研究了CrSiN的力学性能。结果表明,CrSiN涂层具有良好的力学性能,硬度为30.52 ± 1.85 GPa,弹性模量338.32 ± 13.5 GPa。采用多循环纳米压痕试验研究了CrSiN薄膜的疲劳行为。在循环纳米压痕下,卸载-再加载路径产生反映疲劳效应的磁滞回线。此外,压痕循环次数的增加导致薄膜力学性能的退化和损伤机制的演变。基于Manson–Coffin定律,利用压痕疲劳深度扩展和常规疲劳裂纹扩展之间的相似性来提取CrSiN涂层的疲劳性能。获得的疲劳延性系数为,疲劳延性指数为c = −0.96。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fatigue behaviour and mechanical properties of PVD CrSiN coating using cyclic nanoindentation
ABSTRACT In this study, chromium nitride-based CrSiN coatings were deposited by PVD (physical vapour deposition) magnetron sputtering on XC100 steel substrate. Mechanical properties of CrSiN were investigated using monotonic nanoindentation test. It was found that CrSiN coatings had excellent mechanical properties, hardness of 30.52 ± 1.85 GPa and elastic modulus of 338.32 ± 13.5 GPa. Fatigue behaviour of CrSiN thin film was studied using multi-cycles nanoindentation test. Under cyclic nanoindentation, the unloading–reloading paths produced the hysteresis loops which reflect a fatigue effect. In addition, the increase in the number of indentation cycle induced the degradation of the film mechanical proprieties and the evolution of damage mechanism. The similarity between the indentation fatigue depth propagation and the conventional fatigue crack growth was exploited based on Manson–Coffin law to extract the fatigue properties of CrSiN coating. The obtained fatigue ductility coefficient was and the fatigue ductility exponent was c = −0.96.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology - Materials, Surfaces & Interfaces
Tribology - Materials, Surfaces & Interfaces MATERIALS SCIENCE, COATINGS & FILMS-
CiteScore
2.80
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信