Biyun Ma, Diyuan Xu, Xinyu Ren, Yide Wang, Jiaojiao Liu
{"title":"无人机辅助物联网节点安全通信系统的资源分配","authors":"Biyun Ma, Diyuan Xu, Xinyu Ren, Yide Wang, Jiaojiao Liu","doi":"10.3390/signals4030031","DOIUrl":null,"url":null,"abstract":"To balance the information security and energy harvest for massive internet-of-things (IoT) devices, an unmanned aerial vehicle (UAV)–assisted secure communication model is proposed in this paper. We extend the secure transmission model with physical layer security (PLS) to simultaneous wireless information and power transfer (SWIPT) technology and optimize the UAV trajectory, transmission power, and power splitting ratio (PSR). The nonconvex object function is decomposed into three subproblems. Then a robust iterative suboptimal algorithm based on the block coordinate descent (BCD) method is proposed to solve the subproblems. Numerical simulation results are provided to show the effectiveness of the proposed method. These results clearly illustrate that our resource allocation schemes surpass baseline schemes in terms of both transmit power and ratio of harvesting energy, while maintaining an approximately instantaneous secrecy rate.","PeriodicalId":93815,"journal":{"name":"Signals","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resource Allocation of UAV-Assisted IoT Node Secure Communication System\",\"authors\":\"Biyun Ma, Diyuan Xu, Xinyu Ren, Yide Wang, Jiaojiao Liu\",\"doi\":\"10.3390/signals4030031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To balance the information security and energy harvest for massive internet-of-things (IoT) devices, an unmanned aerial vehicle (UAV)–assisted secure communication model is proposed in this paper. We extend the secure transmission model with physical layer security (PLS) to simultaneous wireless information and power transfer (SWIPT) technology and optimize the UAV trajectory, transmission power, and power splitting ratio (PSR). The nonconvex object function is decomposed into three subproblems. Then a robust iterative suboptimal algorithm based on the block coordinate descent (BCD) method is proposed to solve the subproblems. Numerical simulation results are provided to show the effectiveness of the proposed method. These results clearly illustrate that our resource allocation schemes surpass baseline schemes in terms of both transmit power and ratio of harvesting energy, while maintaining an approximately instantaneous secrecy rate.\",\"PeriodicalId\":93815,\"journal\":{\"name\":\"Signals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/signals4030031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals4030031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resource Allocation of UAV-Assisted IoT Node Secure Communication System
To balance the information security and energy harvest for massive internet-of-things (IoT) devices, an unmanned aerial vehicle (UAV)–assisted secure communication model is proposed in this paper. We extend the secure transmission model with physical layer security (PLS) to simultaneous wireless information and power transfer (SWIPT) technology and optimize the UAV trajectory, transmission power, and power splitting ratio (PSR). The nonconvex object function is decomposed into three subproblems. Then a robust iterative suboptimal algorithm based on the block coordinate descent (BCD) method is proposed to solve the subproblems. Numerical simulation results are provided to show the effectiveness of the proposed method. These results clearly illustrate that our resource allocation schemes surpass baseline schemes in terms of both transmit power and ratio of harvesting energy, while maintaining an approximately instantaneous secrecy rate.