{"title":"求解反圆柱单相Stefan问题的热多项式方法","authors":"S. Kassabek, S. Kharin, D. Suragan","doi":"10.1080/17415977.2021.2000977","DOIUrl":null,"url":null,"abstract":"In this paper, solutions of one-phase inverse Stefan problems are studied. The approach presented in the paper is an application of the heat polynomials method (HPM) for solving one- and two-dimensional inverse Stefan problems, where the boundary data is reconstructed on a fixed boundary. We present numerical results illustrating an application of the heat polynomials method for several benchmark examples. We study the effects of accuracy and measurement error for different degree of heat polynomials. Due to ill-conditioning of the matrix generated by HPM, optimization techniques are used to obtain regularized solution. Therefore, the sensitivity of the method to the data disturbance is discussed. Theoretical properties of the proposed method, as well as numerical experiments, demonstrate that to reach accurate results it is quite sufficient to consider only a few of the polynomials. The heat flux for two-dimensional inverse Stefan problem is reconstructed and coefficients of a solution function are found approximately.","PeriodicalId":54926,"journal":{"name":"Inverse Problems in Science and Engineering","volume":"29 1","pages":"3423 - 3450"},"PeriodicalIF":1.1000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A heat polynomial method for inverse cylindrical one-phase Stefan problems\",\"authors\":\"S. Kassabek, S. Kharin, D. Suragan\",\"doi\":\"10.1080/17415977.2021.2000977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, solutions of one-phase inverse Stefan problems are studied. The approach presented in the paper is an application of the heat polynomials method (HPM) for solving one- and two-dimensional inverse Stefan problems, where the boundary data is reconstructed on a fixed boundary. We present numerical results illustrating an application of the heat polynomials method for several benchmark examples. We study the effects of accuracy and measurement error for different degree of heat polynomials. Due to ill-conditioning of the matrix generated by HPM, optimization techniques are used to obtain regularized solution. Therefore, the sensitivity of the method to the data disturbance is discussed. Theoretical properties of the proposed method, as well as numerical experiments, demonstrate that to reach accurate results it is quite sufficient to consider only a few of the polynomials. The heat flux for two-dimensional inverse Stefan problem is reconstructed and coefficients of a solution function are found approximately.\",\"PeriodicalId\":54926,\"journal\":{\"name\":\"Inverse Problems in Science and Engineering\",\"volume\":\"29 1\",\"pages\":\"3423 - 3450\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems in Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17415977.2021.2000977\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems in Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17415977.2021.2000977","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A heat polynomial method for inverse cylindrical one-phase Stefan problems
In this paper, solutions of one-phase inverse Stefan problems are studied. The approach presented in the paper is an application of the heat polynomials method (HPM) for solving one- and two-dimensional inverse Stefan problems, where the boundary data is reconstructed on a fixed boundary. We present numerical results illustrating an application of the heat polynomials method for several benchmark examples. We study the effects of accuracy and measurement error for different degree of heat polynomials. Due to ill-conditioning of the matrix generated by HPM, optimization techniques are used to obtain regularized solution. Therefore, the sensitivity of the method to the data disturbance is discussed. Theoretical properties of the proposed method, as well as numerical experiments, demonstrate that to reach accurate results it is quite sufficient to consider only a few of the polynomials. The heat flux for two-dimensional inverse Stefan problem is reconstructed and coefficients of a solution function are found approximately.
期刊介绍:
Inverse Problems in Science and Engineering provides an international forum for the discussion of conceptual ideas and methods for the practical solution of applied inverse problems. The Journal aims to address the needs of practising engineers, mathematicians and researchers and to serve as a focal point for the quick communication of ideas. Papers must provide several non-trivial examples of practical applications. Multidisciplinary applied papers are particularly welcome.
Topics include:
-Shape design: determination of shape, size and location of domains (shape identification or optimization in acoustics, aerodynamics, electromagnets, etc; detection of voids and cracks).
-Material properties: determination of physical properties of media.
-Boundary values/initial values: identification of the proper boundary conditions and/or initial conditions (tomographic problems involving X-rays, ultrasonics, optics, thermal sources etc; determination of thermal, stress/strain, electromagnetic, fluid flow etc. boundary conditions on inaccessible boundaries; determination of initial chemical composition, etc.).
-Forces and sources: determination of the unknown external forces or inputs acting on a domain (structural dynamic modification and reconstruction) and internal concentrated and distributed sources/sinks (sources of heat, noise, electromagnetic radiation, etc.).
-Governing equations: inference of analytic forms of partial and/or integral equations governing the variation of measured field quantities.