第一个理想完全分解,牛顿之和

IF 0.3 4区 数学 Q4 MATHEMATICS
D. Bernardi, A. Kraus
{"title":"第一个理想完全分解,牛顿之和","authors":"D. Bernardi, A. Kraus","doi":"10.5802/jtnb.1213","DOIUrl":null,"url":null,"abstract":"Let $K$ be a number field and $f\\in K[X]$ an irreducible monic polynomial with coefficients in $O_K$, the ring of integers of $K$. We aim to enounce an effective criterion, in terms of the Galois group of $f$ over $K$ and a linear recurrence sequence associated to $f$, allowing sometimes to characterize the prime ideals of $O_K$ modulo which $f$ completely splits. If $\\alpha$ is a root of $f$, this criterion therefore gives a characterization of the prime ideals of $O_K$ which split completely in $K(\\alpha)$. It does apply if the degree of $f$ is at least $4$ and the Galois group of $f$ is the symmetric group or the alternating group.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Idéaux premiers totalement décomposés et sommes de Newton\",\"authors\":\"D. Bernardi, A. Kraus\",\"doi\":\"10.5802/jtnb.1213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K$ be a number field and $f\\\\in K[X]$ an irreducible monic polynomial with coefficients in $O_K$, the ring of integers of $K$. We aim to enounce an effective criterion, in terms of the Galois group of $f$ over $K$ and a linear recurrence sequence associated to $f$, allowing sometimes to characterize the prime ideals of $O_K$ modulo which $f$ completely splits. If $\\\\alpha$ is a root of $f$, this criterion therefore gives a characterization of the prime ideals of $O_K$ which split completely in $K(\\\\alpha)$. It does apply if the degree of $f$ is at least $4$ and the Galois group of $f$ is the symmetric group or the alternating group.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1213\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1213","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$K$是一个数字域,$f\在K[X]$中是一个不可约的单多项式,其系数在$K$的整数环$O_K$中。我们的目标是宣布一个有效的准则,根据伽罗瓦群$f$ / $K$和与$f$相关的线性递归序列,允许有时表征$f$完全分裂的$O_K$模的素数理想。如果$\ α $是$f$的根,则该准则给出了$O_K$的素理想的表征,它完全分裂为$K(\ α)$。如果f$的阶至少为4$,并且f$的伽罗瓦群是对称群或交替群,则适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Idéaux premiers totalement décomposés et sommes de Newton
Let $K$ be a number field and $f\in K[X]$ an irreducible monic polynomial with coefficients in $O_K$, the ring of integers of $K$. We aim to enounce an effective criterion, in terms of the Galois group of $f$ over $K$ and a linear recurrence sequence associated to $f$, allowing sometimes to characterize the prime ideals of $O_K$ modulo which $f$ completely splits. If $\alpha$ is a root of $f$, this criterion therefore gives a characterization of the prime ideals of $O_K$ which split completely in $K(\alpha)$. It does apply if the degree of $f$ is at least $4$ and the Galois group of $f$ is the symmetric group or the alternating group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信