{"title":"第一个理想完全分解,牛顿之和","authors":"D. Bernardi, A. Kraus","doi":"10.5802/jtnb.1213","DOIUrl":null,"url":null,"abstract":"Let $K$ be a number field and $f\\in K[X]$ an irreducible monic polynomial with coefficients in $O_K$, the ring of integers of $K$. We aim to enounce an effective criterion, in terms of the Galois group of $f$ over $K$ and a linear recurrence sequence associated to $f$, allowing sometimes to characterize the prime ideals of $O_K$ modulo which $f$ completely splits. If $\\alpha$ is a root of $f$, this criterion therefore gives a characterization of the prime ideals of $O_K$ which split completely in $K(\\alpha)$. It does apply if the degree of $f$ is at least $4$ and the Galois group of $f$ is the symmetric group or the alternating group.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Idéaux premiers totalement décomposés et sommes de Newton\",\"authors\":\"D. Bernardi, A. Kraus\",\"doi\":\"10.5802/jtnb.1213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K$ be a number field and $f\\\\in K[X]$ an irreducible monic polynomial with coefficients in $O_K$, the ring of integers of $K$. We aim to enounce an effective criterion, in terms of the Galois group of $f$ over $K$ and a linear recurrence sequence associated to $f$, allowing sometimes to characterize the prime ideals of $O_K$ modulo which $f$ completely splits. If $\\\\alpha$ is a root of $f$, this criterion therefore gives a characterization of the prime ideals of $O_K$ which split completely in $K(\\\\alpha)$. It does apply if the degree of $f$ is at least $4$ and the Galois group of $f$ is the symmetric group or the alternating group.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1213\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1213","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Idéaux premiers totalement décomposés et sommes de Newton
Let $K$ be a number field and $f\in K[X]$ an irreducible monic polynomial with coefficients in $O_K$, the ring of integers of $K$. We aim to enounce an effective criterion, in terms of the Galois group of $f$ over $K$ and a linear recurrence sequence associated to $f$, allowing sometimes to characterize the prime ideals of $O_K$ modulo which $f$ completely splits. If $\alpha$ is a root of $f$, this criterion therefore gives a characterization of the prime ideals of $O_K$ which split completely in $K(\alpha)$. It does apply if the degree of $f$ is at least $4$ and the Galois group of $f$ is the symmetric group or the alternating group.