改进的PINNs分析:减轻组合解决方案的CoD

Yuling Jiao, Xiliang Lu, Jerry Zhijian Yang, Cheng Yuan and Pingwen Zhang
{"title":"改进的PINNs分析:减轻组合解决方案的CoD","authors":"Yuling Jiao, Xiliang Lu, Jerry Zhijian Yang, Cheng Yuan and Pingwen Zhang","doi":"10.4208/aam.oa-2023-0021","DOIUrl":null,"url":null,"abstract":". In this paper, we present an improved analysis of the Physics In-formed Neural Networks (PINNs) method for solving second-order elliptic equations. By assuming an intrinsic sparse structure in the underlying solution, we provide a convergence rate analysis that can overcome the curse of dimensionality (CoD). Specifically, using some approximation theory in Sobolev space together with the multivariate Faa di Bruno formula, we first derive the approximation error for composition functions with a small degree of freedom in each compositional layer. Furthermore, by integrating several results on the statistical error of neural networks, we obtain a refined convergence rate analysis for PINNs in solving elliptic equations with compositional solutions. We also demonstrate the benefits of the intrinsic sparse structure with two simple numerical examples.","PeriodicalId":58853,"journal":{"name":"应用数学年刊:英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Analysis of PINNs: Alleviate the CoD for Compositional Solutions\",\"authors\":\"Yuling Jiao, Xiliang Lu, Jerry Zhijian Yang, Cheng Yuan and Pingwen Zhang\",\"doi\":\"10.4208/aam.oa-2023-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we present an improved analysis of the Physics In-formed Neural Networks (PINNs) method for solving second-order elliptic equations. By assuming an intrinsic sparse structure in the underlying solution, we provide a convergence rate analysis that can overcome the curse of dimensionality (CoD). Specifically, using some approximation theory in Sobolev space together with the multivariate Faa di Bruno formula, we first derive the approximation error for composition functions with a small degree of freedom in each compositional layer. Furthermore, by integrating several results on the statistical error of neural networks, we obtain a refined convergence rate analysis for PINNs in solving elliptic equations with compositional solutions. We also demonstrate the benefits of the intrinsic sparse structure with two simple numerical examples.\",\"PeriodicalId\":58853,\"journal\":{\"name\":\"应用数学年刊:英文版\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"应用数学年刊:英文版\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4208/aam.oa-2023-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用数学年刊:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4208/aam.oa-2023-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

。本文提出了求解二阶椭圆方程的物理信息神经网络(PINNs)方法的改进分析。通过在底层解中假设一个固有的稀疏结构,我们提供了一个收敛速度分析,可以克服维数诅咒(CoD)。具体而言,利用Sobolev空间中的近似理论,结合多元的Faa di Bruno公式,首先推导出了小自由度组合函数在各组合层中的近似误差。此外,通过对神经网络统计误差的几个结果的综合,我们得到了pinn在求解具有组合解的椭圆型方程时收敛速度的精细分析。我们还通过两个简单的数值例子证明了本征稀疏结构的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Analysis of PINNs: Alleviate the CoD for Compositional Solutions
. In this paper, we present an improved analysis of the Physics In-formed Neural Networks (PINNs) method for solving second-order elliptic equations. By assuming an intrinsic sparse structure in the underlying solution, we provide a convergence rate analysis that can overcome the curse of dimensionality (CoD). Specifically, using some approximation theory in Sobolev space together with the multivariate Faa di Bruno formula, we first derive the approximation error for composition functions with a small degree of freedom in each compositional layer. Furthermore, by integrating several results on the statistical error of neural networks, we obtain a refined convergence rate analysis for PINNs in solving elliptic equations with compositional solutions. We also demonstrate the benefits of the intrinsic sparse structure with two simple numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
544
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信