Zhengkun Zhang , Jinya Li , Guanyao Yu , Chao Zeng , Menglong Wang , Susu Huang , Li Wang , Jinglai Zhang
{"title":"dmap基离子液体在大气CO2下高效合成环状碳酸盐:阳离子中惰性氢原子与活性氢原子的差异","authors":"Zhengkun Zhang , Jinya Li , Guanyao Yu , Chao Zeng , Menglong Wang , Susu Huang , Li Wang , Jinglai Zhang","doi":"10.1016/j.gce.2022.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>The coupling reaction of carbon dioxide (CO<sub>2</sub>) and epoxides is one of the most efficient pathways to achieve the carbon balance. However, to accomplish it under the mild conditions, especially under the atmospheric pressure, is still a perplexing problem. Three novel ionic liquids (ILs), [DMAPBrPC][TMGH], [DMAPBrPC][DBUH], and [DMAPBrPC][BTMA], are designed and synthesized. All of them display the excellent catalytic activity for the title reaction achieving the yield over 96.6% under the atmospheric CO<sub>2</sub> pressure at 60 °C. Interestingly, [DMAPBrPC][BTMA] with the inert hydrogen atom in cation exhibits the superior catalytic activity as compared to other two ILs with the protic hydrogen atom in cation along with the same anion. The active hydrogen atom in [DMAPBrPC][TMGH] and [DMAPBrPC][DBUH] would impede the –COO<sup>−</sup> group to absorb CO<sub>2</sub>, which is an unfavorable item for the reaction. Moreover, the strong hydrogen bond in [DMAPBrPC][TMGH] and [DMAPBrPC][DBUH] would lessen the nucleophilic ability of Br<sup>−</sup> anion resulting in the inferior catalytic performance, which is further confirmed by the density functional theory (DFT) calculations. The cation without the active hydrogen atom could also be employed to design the ILs with the excellent catalytic feature when it is combined with the suitable anion.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient synthesis of cyclic carbonates under atmospheric CO2 by DMAP-based ionic liquids: the difference of inert hydrogen atom and active hydrogen atom in cation\",\"authors\":\"Zhengkun Zhang , Jinya Li , Guanyao Yu , Chao Zeng , Menglong Wang , Susu Huang , Li Wang , Jinglai Zhang\",\"doi\":\"10.1016/j.gce.2022.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The coupling reaction of carbon dioxide (CO<sub>2</sub>) and epoxides is one of the most efficient pathways to achieve the carbon balance. However, to accomplish it under the mild conditions, especially under the atmospheric pressure, is still a perplexing problem. Three novel ionic liquids (ILs), [DMAPBrPC][TMGH], [DMAPBrPC][DBUH], and [DMAPBrPC][BTMA], are designed and synthesized. All of them display the excellent catalytic activity for the title reaction achieving the yield over 96.6% under the atmospheric CO<sub>2</sub> pressure at 60 °C. Interestingly, [DMAPBrPC][BTMA] with the inert hydrogen atom in cation exhibits the superior catalytic activity as compared to other two ILs with the protic hydrogen atom in cation along with the same anion. The active hydrogen atom in [DMAPBrPC][TMGH] and [DMAPBrPC][DBUH] would impede the –COO<sup>−</sup> group to absorb CO<sub>2</sub>, which is an unfavorable item for the reaction. Moreover, the strong hydrogen bond in [DMAPBrPC][TMGH] and [DMAPBrPC][DBUH] would lessen the nucleophilic ability of Br<sup>−</sup> anion resulting in the inferior catalytic performance, which is further confirmed by the density functional theory (DFT) calculations. The cation without the active hydrogen atom could also be employed to design the ILs with the excellent catalytic feature when it is combined with the suitable anion.</p></div>\",\"PeriodicalId\":66474,\"journal\":{\"name\":\"Green Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemical Engineering\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666952822000504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952822000504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Efficient synthesis of cyclic carbonates under atmospheric CO2 by DMAP-based ionic liquids: the difference of inert hydrogen atom and active hydrogen atom in cation
The coupling reaction of carbon dioxide (CO2) and epoxides is one of the most efficient pathways to achieve the carbon balance. However, to accomplish it under the mild conditions, especially under the atmospheric pressure, is still a perplexing problem. Three novel ionic liquids (ILs), [DMAPBrPC][TMGH], [DMAPBrPC][DBUH], and [DMAPBrPC][BTMA], are designed and synthesized. All of them display the excellent catalytic activity for the title reaction achieving the yield over 96.6% under the atmospheric CO2 pressure at 60 °C. Interestingly, [DMAPBrPC][BTMA] with the inert hydrogen atom in cation exhibits the superior catalytic activity as compared to other two ILs with the protic hydrogen atom in cation along with the same anion. The active hydrogen atom in [DMAPBrPC][TMGH] and [DMAPBrPC][DBUH] would impede the –COO− group to absorb CO2, which is an unfavorable item for the reaction. Moreover, the strong hydrogen bond in [DMAPBrPC][TMGH] and [DMAPBrPC][DBUH] would lessen the nucleophilic ability of Br− anion resulting in the inferior catalytic performance, which is further confirmed by the density functional theory (DFT) calculations. The cation without the active hydrogen atom could also be employed to design the ILs with the excellent catalytic feature when it is combined with the suitable anion.