孔雀石绿在阳离子染料混合物上对磁铁矿腐植酸吸附的选择性

Q3 Environmental Science
N. Ahmad, Fitri Suryani Arsyad, I. Royani, A. Lesbani
{"title":"孔雀石绿在阳离子染料混合物上对磁铁矿腐植酸吸附的选择性","authors":"N. Ahmad, Fitri Suryani Arsyad, I. Royani, A. Lesbani","doi":"10.32526/ennrj/20/202200142","DOIUrl":null,"url":null,"abstract":"Magnetite humic acid (MHA) was successfully synthesized by the coprecipitation method followed by hydrothermal process, as evidenced by the XRD, FTIR, VSM, and SEM analysis characterization results. XRD diffraction shows diffraction peaks at 2θ=21.53º, 35.95º, and 57.93º. The FTIR spectra have a typical absorption at 3,410, 1,589, 1,396, 1,026, 910, 794, and 540 cm-1. Magnetite humic acid was paramagnetic with magnetization (Ms) 17.04 emu/g. Humic acid and magnetite humic acid have an irregular structure; the morphology of magnetite humic acid is smoother than humic acid. Malachite green was more selective than methylene blue and rhodamine B on magnetite humic acid. The adsorption of malachite green on humic acid and magnetite humic acid was carried out at pHpzc 8.06 and 6.08. The adsorption capacity (Qmax) of humic acid (77.519 mg/g) and magnetite humic acid (169.492 mg/g) were found with pseudo-second-order kinetic and Langmuir isotherm models. After five regeneration cycles, the adsorption percentages of malachite green with humic acid and magnetite humic acid ranged from 94.67-61.37% and 62.03-21.11%, respectively. Magnetite humic acid has high stability and reusability. The good regeneration of MHA was supported by the XRD diffractogram. Magnetic properties in the material simplify the adsorption process and minimize the potential for damage to the surface of the material.","PeriodicalId":11784,"journal":{"name":"Environment and Natural Resources Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Selectivity of Malachite Green on Cationic Dye Mixtures Toward Adsorption on Magnetite Humic Acid\",\"authors\":\"N. Ahmad, Fitri Suryani Arsyad, I. Royani, A. Lesbani\",\"doi\":\"10.32526/ennrj/20/202200142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetite humic acid (MHA) was successfully synthesized by the coprecipitation method followed by hydrothermal process, as evidenced by the XRD, FTIR, VSM, and SEM analysis characterization results. XRD diffraction shows diffraction peaks at 2θ=21.53º, 35.95º, and 57.93º. The FTIR spectra have a typical absorption at 3,410, 1,589, 1,396, 1,026, 910, 794, and 540 cm-1. Magnetite humic acid was paramagnetic with magnetization (Ms) 17.04 emu/g. Humic acid and magnetite humic acid have an irregular structure; the morphology of magnetite humic acid is smoother than humic acid. Malachite green was more selective than methylene blue and rhodamine B on magnetite humic acid. The adsorption of malachite green on humic acid and magnetite humic acid was carried out at pHpzc 8.06 and 6.08. The adsorption capacity (Qmax) of humic acid (77.519 mg/g) and magnetite humic acid (169.492 mg/g) were found with pseudo-second-order kinetic and Langmuir isotherm models. After five regeneration cycles, the adsorption percentages of malachite green with humic acid and magnetite humic acid ranged from 94.67-61.37% and 62.03-21.11%, respectively. Magnetite humic acid has high stability and reusability. The good regeneration of MHA was supported by the XRD diffractogram. Magnetic properties in the material simplify the adsorption process and minimize the potential for damage to the surface of the material.\",\"PeriodicalId\":11784,\"journal\":{\"name\":\"Environment and Natural Resources Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Natural Resources Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32526/ennrj/20/202200142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Natural Resources Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32526/ennrj/20/202200142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 3

摘要

通过XRD、FTIR、VSM、SEM等分析表征,采用共沉淀法、水热法成功合成了磁性腐植酸(MHA)。XRD衍射峰位于2θ=21.53º、35.95º和57.93º处。FTIR光谱在3,410,1,589,1,396,1,026,910,794和540 cm-1处具有典型的吸收。磁性腐植酸具有顺磁性,磁化强度(Ms)为17.04 emu/g。腐植酸和磁铁矿腐植酸具有不规则结构;磁铁矿腐植酸的形貌比腐植酸光滑。孔雀石绿对磁性腐殖酸的选择性高于亚甲基蓝和罗丹明B。在pHpzc为8.06和6.08时,孔雀石绿对腐植酸和磁铁矿腐植酸进行吸附。采用拟二级动力学模型和Langmuir等温模型,得到了腐植酸(77.519 mg/g)和磁铁矿腐植酸(169.492 mg/g)的吸附量Qmax。5次再生循环后,孔雀石绿对腐植酸和磁铁矿腐植酸的吸附率分别为94.67 ~ 61.37%和62.03 ~ 21.11%。磁性腐植酸具有较高的稳定性和可重复使用性。XRD衍射图证实了MHA具有良好的再生性能。材料中的磁性简化了吸附过程,并最大限度地减少了对材料表面损坏的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selectivity of Malachite Green on Cationic Dye Mixtures Toward Adsorption on Magnetite Humic Acid
Magnetite humic acid (MHA) was successfully synthesized by the coprecipitation method followed by hydrothermal process, as evidenced by the XRD, FTIR, VSM, and SEM analysis characterization results. XRD diffraction shows diffraction peaks at 2θ=21.53º, 35.95º, and 57.93º. The FTIR spectra have a typical absorption at 3,410, 1,589, 1,396, 1,026, 910, 794, and 540 cm-1. Magnetite humic acid was paramagnetic with magnetization (Ms) 17.04 emu/g. Humic acid and magnetite humic acid have an irregular structure; the morphology of magnetite humic acid is smoother than humic acid. Malachite green was more selective than methylene blue and rhodamine B on magnetite humic acid. The adsorption of malachite green on humic acid and magnetite humic acid was carried out at pHpzc 8.06 and 6.08. The adsorption capacity (Qmax) of humic acid (77.519 mg/g) and magnetite humic acid (169.492 mg/g) were found with pseudo-second-order kinetic and Langmuir isotherm models. After five regeneration cycles, the adsorption percentages of malachite green with humic acid and magnetite humic acid ranged from 94.67-61.37% and 62.03-21.11%, respectively. Magnetite humic acid has high stability and reusability. The good regeneration of MHA was supported by the XRD diffractogram. Magnetic properties in the material simplify the adsorption process and minimize the potential for damage to the surface of the material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environment and Natural Resources Journal
Environment and Natural Resources Journal Environmental Science-Environmental Science (all)
CiteScore
1.90
自引率
0.00%
发文量
49
审稿时长
8 weeks
期刊介绍: The Environment and Natural Resources Journal is a peer-reviewed journal, which provides insight scientific knowledge into the diverse dimensions of integrated environmental and natural resource management. The journal aims to provide a platform for exchange and distribution of the knowledge and cutting-edge research in the fields of environmental science and natural resource management to academicians, scientists and researchers. The journal accepts a varied array of manuscripts on all aspects of environmental science and natural resource management. The journal scope covers the integration of multidisciplinary sciences for prevention, control, treatment, environmental clean-up and restoration. The study of the existing or emerging problems of environment and natural resources in the region of Southeast Asia and the creation of novel knowledge and/or recommendations of mitigation measures for sustainable development policies are emphasized. The subject areas are diverse, but specific topics of interest include: -Biodiversity -Climate change -Detection and monitoring of polluted sources e.g., industry, mining -Disaster e.g., forest fire, flooding, earthquake, tsunami, or tidal wave -Ecological/Environmental modelling -Emerging contaminants/hazardous wastes investigation and remediation -Environmental dynamics e.g., coastal erosion, sea level rise -Environmental assessment tools, policy and management e.g., GIS, remote sensing, Environmental -Management System (EMS) -Environmental pollution and other novel solutions to pollution -Remediation technology of contaminated environments -Transboundary pollution -Waste and wastewater treatments and disposal technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信