一种用于制药的3D打印人工血管

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY
S. Esmaeili, M. Shahali, Alireza Kordjamshidi, Zahra Torkpoor, Farshad Namdari, S. S. Samandari, M. G. Nejad, A. Khandan
{"title":"一种用于制药的3D打印人工血管","authors":"S. Esmaeili, M. Shahali, Alireza Kordjamshidi, Zahra Torkpoor, Farshad Namdari, S. S. Samandari, M. G. Nejad, A. Khandan","doi":"10.22038/NMJ.2019.06.00005","DOIUrl":null,"url":null,"abstract":"Objective(s): Cardiovascular diseases (CVDs) are the leading cause of mortality in the elderly. A common medical procedure for the treatment of CVDs is the replacement of the blocked or narrowed arteries, which is currently the optimal vascular transplant associated with autograft transplantation. In general, the saphenous veins and radial arteries in the mammary gland are considered to be the selective vessels for vascular substitution. In many cardiac patients, artificial blood vessels (ABVs) are not used for several reasons, including the age of the patient, small size of the veins, previous impressions, and abnormally. Therefore, the consideration of vascular substitute demands is inevitable, especially regarding vascular transplantation with very small diameters and availability of proper alternatives. The present study aimed to develop a novel artificial bio-composite blood vessel using polymer-reinforced and bioceramic nanoparticles. Materials and Methods: The biomechanics and chemical properties of artificial vessels have been investigated to be used in coronary artery bypassing in atherosclerosis as a soft tissue engineering procedure. In this study, thermoplastic polyurethane (TPU) composed of nanocrystalline hydroxyapatite (HA) nanopowder was prepared using the extrusion technique to construct the ABVs. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the optimum specimen. An important feature of the ABVs was the ability to find the elastic modulus, wettability, and porosity of the veins, which were assessed by fused deposition modeling and 3D printing. Results: The sample containing five wt% of HA had superior mechanical and biological features over the pure sample. Conclusion: According to the results, the narrowed arteries composed of TPU composite with nanocrystalline HA nanopowder had proper chemical stability and mechanical characteristics.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"An artificial blood vessel fabricated by 3D printing for pharmaceutical application\",\"authors\":\"S. Esmaeili, M. Shahali, Alireza Kordjamshidi, Zahra Torkpoor, Farshad Namdari, S. S. Samandari, M. G. Nejad, A. Khandan\",\"doi\":\"10.22038/NMJ.2019.06.00005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective(s): Cardiovascular diseases (CVDs) are the leading cause of mortality in the elderly. A common medical procedure for the treatment of CVDs is the replacement of the blocked or narrowed arteries, which is currently the optimal vascular transplant associated with autograft transplantation. In general, the saphenous veins and radial arteries in the mammary gland are considered to be the selective vessels for vascular substitution. In many cardiac patients, artificial blood vessels (ABVs) are not used for several reasons, including the age of the patient, small size of the veins, previous impressions, and abnormally. Therefore, the consideration of vascular substitute demands is inevitable, especially regarding vascular transplantation with very small diameters and availability of proper alternatives. The present study aimed to develop a novel artificial bio-composite blood vessel using polymer-reinforced and bioceramic nanoparticles. Materials and Methods: The biomechanics and chemical properties of artificial vessels have been investigated to be used in coronary artery bypassing in atherosclerosis as a soft tissue engineering procedure. In this study, thermoplastic polyurethane (TPU) composed of nanocrystalline hydroxyapatite (HA) nanopowder was prepared using the extrusion technique to construct the ABVs. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the optimum specimen. An important feature of the ABVs was the ability to find the elastic modulus, wettability, and porosity of the veins, which were assessed by fused deposition modeling and 3D printing. Results: The sample containing five wt% of HA had superior mechanical and biological features over the pure sample. Conclusion: According to the results, the narrowed arteries composed of TPU composite with nanocrystalline HA nanopowder had proper chemical stability and mechanical characteristics.\",\"PeriodicalId\":18933,\"journal\":{\"name\":\"Nanomedicine Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22038/NMJ.2019.06.00005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22038/NMJ.2019.06.00005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 39

摘要

目的:心血管疾病是导致老年人死亡的主要原因。治疗心血管疾病的一种常见医疗程序是更换堵塞或狭窄的动脉,这是目前与自体移植物移植相关的最佳血管移植。一般来说,乳腺中的隐静脉和桡动脉被认为是血管替代的选择性血管。在许多心脏病患者中,人工血管(ABV)由于几个原因而不被使用,包括患者的年龄、静脉尺寸小、以前的印模和异常。因此,考虑血管替代品的需求是不可避免的,尤其是对于直径非常小的血管移植和合适的替代品的可用性。本研究旨在利用聚合物增强和生物陶瓷纳米颗粒开发一种新型的人工生物复合血管。材料和方法:研究了人工血管的生物力学和化学特性,作为一种软组织工程方法,用于动脉粥样硬化的冠状动脉旁路。本研究采用挤出技术制备了由纳米羟基磷灰石(HA)纳米粉末组成的热塑性聚氨酯(TPU),构建了ABV。采用X射线衍射(XRD)和扫描电子显微镜(SEM)对最佳样品进行了研究。ABV的一个重要特征是能够找到矿脉的弹性模量、润湿性和孔隙率,这是通过熔融沉积建模和3D打印进行评估的。结果:与纯样品相比,含有5wt%HA的样品具有更好的力学和生物学特性。结论:用纳米HA粉与TPU复合材料制备的狭窄动脉具有良好的化学稳定性和力学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An artificial blood vessel fabricated by 3D printing for pharmaceutical application
Objective(s): Cardiovascular diseases (CVDs) are the leading cause of mortality in the elderly. A common medical procedure for the treatment of CVDs is the replacement of the blocked or narrowed arteries, which is currently the optimal vascular transplant associated with autograft transplantation. In general, the saphenous veins and radial arteries in the mammary gland are considered to be the selective vessels for vascular substitution. In many cardiac patients, artificial blood vessels (ABVs) are not used for several reasons, including the age of the patient, small size of the veins, previous impressions, and abnormally. Therefore, the consideration of vascular substitute demands is inevitable, especially regarding vascular transplantation with very small diameters and availability of proper alternatives. The present study aimed to develop a novel artificial bio-composite blood vessel using polymer-reinforced and bioceramic nanoparticles. Materials and Methods: The biomechanics and chemical properties of artificial vessels have been investigated to be used in coronary artery bypassing in atherosclerosis as a soft tissue engineering procedure. In this study, thermoplastic polyurethane (TPU) composed of nanocrystalline hydroxyapatite (HA) nanopowder was prepared using the extrusion technique to construct the ABVs. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the optimum specimen. An important feature of the ABVs was the ability to find the elastic modulus, wettability, and porosity of the veins, which were assessed by fused deposition modeling and 3D printing. Results: The sample containing five wt% of HA had superior mechanical and biological features over the pure sample. Conclusion: According to the results, the narrowed arteries composed of TPU composite with nanocrystalline HA nanopowder had proper chemical stability and mechanical characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomedicine Journal
Nanomedicine Journal NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信