分位数和分位数密度函数的非参数估计

X. Yang, H. Ad, D. Wang
{"title":"分位数和分位数密度函数的非参数估计","authors":"X. Yang, H. Ad, D. Wang","doi":"10.4172/2155-6180.1000356","DOIUrl":null,"url":null,"abstract":"In this article, we derive a new and unique method of estimating quantile and quantile density function, which is based on moments of fractional order statistics. A comparison of the proposed estimators is made with existing popular nonparametric quantile and quantile density estimators, in terms of mean squared error (MSE) for censored and uncensored data. Recommendations for the choice of quantile and/or quantile density estimators are given.","PeriodicalId":87294,"journal":{"name":"Journal of biometrics & biostatistics","volume":"8 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Nonparametric Estimation of Quantile and Quantile Density Function\",\"authors\":\"X. Yang, H. Ad, D. Wang\",\"doi\":\"10.4172/2155-6180.1000356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we derive a new and unique method of estimating quantile and quantile density function, which is based on moments of fractional order statistics. A comparison of the proposed estimators is made with existing popular nonparametric quantile and quantile density estimators, in terms of mean squared error (MSE) for censored and uncensored data. Recommendations for the choice of quantile and/or quantile density estimators are given.\",\"PeriodicalId\":87294,\"journal\":{\"name\":\"Journal of biometrics & biostatistics\",\"volume\":\"8 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biometrics & biostatistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2155-6180.1000356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biometrics & biostatistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-6180.1000356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于分数阶统计量矩的分位数和分位数密度函数估计的新方法。在截尾和未截尾数据的均方误差(MSE)方面,将所提出的估计量与现有流行的非参数分位数和分位数密度估计量进行了比较。给出了选择分位数和/或分位数密度估计器的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric Estimation of Quantile and Quantile Density Function
In this article, we derive a new and unique method of estimating quantile and quantile density function, which is based on moments of fractional order statistics. A comparison of the proposed estimators is made with existing popular nonparametric quantile and quantile density estimators, in terms of mean squared error (MSE) for censored and uncensored data. Recommendations for the choice of quantile and/or quantile density estimators are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信