负指数的Alt-Phillips泛函最小值的紧性估计

IF 2.1 2区 数学 Q1 MATHEMATICS
D. De Silva, O. Savin
{"title":"负指数的Alt-Phillips泛函最小值的紧性估计","authors":"D. De Silva, O. Savin","doi":"10.1515/ans-2022-0055","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the rigidity of global minimizers u ≥ 0 u\\ge 0 of the Alt-Phillips functional involving negative power potentials ∫ Ω ( ∣ ∇ u ∣ 2 + u − γ χ { u > 0 } ) d x , γ ∈ ( 0 , 2 ) , \\mathop{\\int }\\limits_{\\Omega }(| \\nabla u{| }^{2}+{u}^{-\\gamma }{\\chi }_{\\left\\{u\\gt 0\\right\\}}){\\rm{d}}x,\\hspace{1.0em}\\gamma \\in \\left(0,2), when the exponent γ \\gamma is close to the extremes of the admissible values. In particular, we show that global minimizers in R n {{\\mathbb{R}}}^{n} are one-dimensional if γ \\gamma is close to 2 and n ≤ 7 n\\le 7 , or if γ \\gamma is close to 0 and n ≤ 4 n\\le 4 .","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compactness estimates for minimizers of the Alt-Phillips functional of negative exponents\",\"authors\":\"D. De Silva, O. Savin\",\"doi\":\"10.1515/ans-2022-0055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate the rigidity of global minimizers u ≥ 0 u\\\\ge 0 of the Alt-Phillips functional involving negative power potentials ∫ Ω ( ∣ ∇ u ∣ 2 + u − γ χ { u > 0 } ) d x , γ ∈ ( 0 , 2 ) , \\\\mathop{\\\\int }\\\\limits_{\\\\Omega }(| \\\\nabla u{| }^{2}+{u}^{-\\\\gamma }{\\\\chi }_{\\\\left\\\\{u\\\\gt 0\\\\right\\\\}}){\\\\rm{d}}x,\\\\hspace{1.0em}\\\\gamma \\\\in \\\\left(0,2), when the exponent γ \\\\gamma is close to the extremes of the admissible values. In particular, we show that global minimizers in R n {{\\\\mathbb{R}}}^{n} are one-dimensional if γ \\\\gamma is close to 2 and n ≤ 7 n\\\\le 7 , or if γ \\\\gamma is close to 0 and n ≤ 4 n\\\\le 4 .\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0055\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0055","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们研究了Alt-Phillips函数的全局极小值u≥0u\ge0的刚度,该函数涉及负幂势dxΩ,当指数γ\gamma接近容许值的极值时。特别地,我们证明了Rn{\mathbb{R}}}^{n}中的全局极小值是一维的,如果γ\ gamma接近2且n≤7,或者如果γ\ gamma接近0且n≤4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compactness estimates for minimizers of the Alt-Phillips functional of negative exponents
Abstract We investigate the rigidity of global minimizers u ≥ 0 u\ge 0 of the Alt-Phillips functional involving negative power potentials ∫ Ω ( ∣ ∇ u ∣ 2 + u − γ χ { u > 0 } ) d x , γ ∈ ( 0 , 2 ) , \mathop{\int }\limits_{\Omega }(| \nabla u{| }^{2}+{u}^{-\gamma }{\chi }_{\left\{u\gt 0\right\}}){\rm{d}}x,\hspace{1.0em}\gamma \in \left(0,2), when the exponent γ \gamma is close to the extremes of the admissible values. In particular, we show that global minimizers in R n {{\mathbb{R}}}^{n} are one-dimensional if γ \gamma is close to 2 and n ≤ 7 n\le 7 , or if γ \gamma is close to 0 and n ≤ 4 n\le 4 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信